dc.contributor.author | Almessiere, Munirah Abdullah | |
dc.contributor.author | Slimani, Yassine | |
dc.contributor.author | Rehman, Sümbül | |
dc.contributor.author | Khan, Firdos Alam | |
dc.contributor.author | Dönmez Güngüneş, Çiğdem | |
dc.contributor.author | Güner, Sadık | |
dc.contributor.author | Baykal, Abdulhadi | |
dc.date.accessioned | 2021-11-01T15:05:11Z | |
dc.date.available | 2021-11-01T15:05:11Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Almessiere, M. A., Slimani, Y., Rehman, S., Khan, F. A., Güngüneş, Ç. D., Güner, S., ... & Baykal, A. (2020). Magnetic properties, anticancer and antibacterial effectiveness of sonochemically produced Ce3+/Dy3+ co-activated Mn-Zn nanospinel ferrites. Arabian Journal of Chemistry, 13(10), 7403-7417. | en_US |
dc.identifier.issn | 1878-5352 | |
dc.identifier.issn | 1878-5379 | |
dc.identifier.uri | https://doi.org/10.1016/j.arabjc.2020.08.017 | |
dc.identifier.uri | https://hdl.handle.net/11491/7163 | |
dc.description.abstract | Some new types of Ce3+ and Dy3+ co-doped manganese-zinc nanospinel ferrites (CDMZNSFs) of the form (Mn0.5Zn0.5)[Fe2-2xCexDyx]O-4 (with 0.0 <= x <= 0.1) were sonochemically produced and characterized. The structure, morphology, optical and magnetic properties of these NSFs were determined as a function of co-dopant (Ce3+ and Dy3+) contents. The direct optical band gap energies of the studied NSFs were ranged from 1.54 to 1.85 eV. The measurements of magnetization versus magnetic field of the prepared NSFs disclosed a superparamagnetic (SPM) behavior at room temperature (RT). The measurements of temperature-dependent magnetizations revealed a transition from superparamagnetic (SPM) state above blocking temperature T-B to a ferromagnetic (FM) state below T-B. The saturation magnetization and T-B decreased with the increase in co-dopant contents. In addition, the bactericidal (on the gram-positive and gram-negative bacterial strains) and anti-cancerous effectiveness of these NSFs were assessed. The cancer cells' growth inhibitory action of these NSFs was tested against both normal (HEK-293) and cancerous (HCT-116) human cells. After 48 h of treatment of the cancerous cells with the NSFs, their population was significantly dropped as shown by the MTT assay, indicating the selective inhibition of the cancer cells growth by the proposed NSFs. Conversely, the non-cancerous cells (HEK-293) population remained unaffected. The IC50 values of the NSFs-treated cancerous cells (HCT-116) were in the range of 0.74-2.35 mu g/mL. The results of the MIC and MBC assays revealed the reasonable antibacterial efficacy (growth inhibitory activity) of these NSFs when tested against the E. coli and S. aureus bacterial strains. It is established that the proposed Ce3+/Dy3+ co-activated CDMZNSFs may be beneficial for the anti-cancerous and bactericidal applications. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. | en_US |
dc.description.sponsorship | Institute for Research and Medical Consultations [2018-IRMC-S-2]; Deanship for Scientific Research of Imam Abdulrahman Bin Faisal University (IAU - Saudi Arabia) [2020-164-IRMC] | en_US |
dc.description.sponsorship | This study is supported by the Institute for Research and Medical Consultations (Project application No. 2018-IRMC-S-2) and by the Deanship for Scientific Research (Project application No. 2020-164-IRMC) of Imam Abdulrahman Bin Faisal University (IAU - Saudi Arabia). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Arabian Journal Of Chemistry | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Nanospinel Ferrites | en_US |
dc.subject | Sonochemistry | en_US |
dc.subject | Anti-cancerous Application | en_US |
dc.subject | Bactericidal Application | en_US |
dc.subject | Magnetic Properties | en_US |
dc.subject | Morphology | en_US |
dc.title | Magnetic properties, anticancer and antibacterial effectiveness of sonochemically produced Ce3+/Dy3+ co-activated Mn-Zn nanospinel ferrites | en_US |
dc.type | article | en_US |
dc.department | Hitit Üniversitesi, Sağlık Bilimleri Fakültesi, Beslenme ve Diyetetik Bölümü | en_US |
dc.authorid | Shirsath, Sagar E. / 0000-0002-2420-1144 | |
dc.authorid | Slimani, Yassine / 0000-0002-2579-1617 | |
dc.identifier.volume | 13 | en_US |
dc.identifier.issue | 10 | en_US |
dc.identifier.startpage | 7403 | en_US |
dc.identifier.endpage | 7417 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.department-temp | [Almessiere, M. A.; Slimani, Y.] Imam Abdulrahman Bin Faisal Univ, Inst Res & Med Consultat IRMC, Dept Biophys, POB 1982, Dammam 31441, Saudi Arabia; [Rehman, S.] Imam Abdulrahman Bin Faisal Univ, Inst Res & Med Consultat IRMC, Dept Epidem Dis Res, POB 1982, Dammam 31441, Saudi Arabia; [Khan, F. A.] Imam Abdulrahman Bin Faisal Univ, Inst Res & Med Consultat IRMC, Dept Stem Cell Biol, POB 1982, Dammam 31441, Saudi Arabia; [Gungunes, C. D.] Hitit Univ, Fac Hlth Sci, Dept Nutr & Dietet, TR-19030 Cevreyolu Bulv, Corum, Turkey; [Guner, S.] Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany; [Shirsath, Sagar E.] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia; [Baykal, A.] Imam Abdulrahman Bin Faisal Univ, Inst Res & Med Consultat IRMC, Dept Nanomed Res, POB 1982, Dammam 31441, Saudi Arabia | en_US |
dc.contributor.institutionauthor | Dönmez Güngüneş, Çiğdem | |
dc.identifier.doi | 10.1016/j.arabjc.2020.08.017 | |
dc.authorwosid | Shirsath, Sagar E. / F-9955-2011 | |
dc.authorwosid | Slimani, Yassine / E-5054-2017 | |
dc.description.wospublicationid | WOS:000576707900014 | en_US |
dc.description.scopuspublicationid | 2-s2.0-85090317679 | en_US |