Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAkmeşe, Ömer Faruk
dc.contributor.authorDoğan, Gül
dc.contributor.authorKör, Hakan
dc.contributor.authorErbay, Hasan
dc.contributor.authorDemir, Emre
dc.date.accessioned2021-11-01T15:05:10Z
dc.date.available2021-11-01T15:05:10Z
dc.date.issued2020
dc.identifier.citationAkmese, O. F., Dogan, G., Kor, H., Erbay, H., & Demir, E. (2020). The use of machine learning approaches for the diagnosis of acute appendicitis. Emergency medicine international, 2020.en_US
dc.identifier.issn2090-2840
dc.identifier.issn2090-2859
dc.identifier.urihttps://doi.org/10.1155/2020/7306435
dc.identifier.urihttps://hdl.handle.net/11491/7154
dc.description.abstractAcute appendicitis is one of the most common emergency diseases in general surgery clinics. It is more common, especially between the ages of 10 and 30 years. Additionally, approximately 7% of the entire population is diagnosed with acute appendicitis at some time in their lives and requires surgery. The study aims to develop an easy, fast, and accurate estimation method for early acute appendicitis diagnosis using machine learning algorithms. Retrospective clinical records were analyzed with predictive data mining models. The predictive success of the models obtained by various machine learning algorithms was compared. A total of 595 clinical records were used in the study, including 348 males (58.49%) and 247 females (41.51%). It was found that the gradient boosted trees algorithm achieves the best success with an accurate prediction success of 95.31%. In this study, an estimation method based on machine learning was developed to identify individuals with acute appendicitis. It is thought that this method will benefit patients with signs of appendicitis, especially in emergency departments in hospitals.en_US
dc.language.isoengen_US
dc.publisherHindawi Ltden_US
dc.relation.ispartofEmergency Medicine Internationalen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keywords]en_US
dc.titleThe Use of Machine Learning Approaches for the Diagnosis of Acute Appendicitisen_US
dc.typearticleen_US
dc.departmentHitit Üniversitesi, Tıp Fakültesi, Temel Tıp Bilimleri Bölümüen_US
dc.departmentHitit Üniversitesi, Tıp Fakültesi, Cerrahi Tıp Bilimleri Bölümüen_US
dc.departmentHitit Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.authoridAkmeşe, Ömer Faruk / 0000-0002-5877-0177
dc.authoridAkmeşe, Ömer Faruk / 0000-0002-5877-0177
dc.authoridErbay, Hasan / 0000-0002-7555-541X
dc.identifier.volume2020en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.department-temp[Akmese, Omer F.] Kirikkale Univ, Univ Hitit, Dept Comp Technol, TR-19500 Corum, Turkey; [Dogan, Gul] Univ Hitit, Dept Surg Med Sci, TR-19040 Corum, Turkey; [Kor, Hakan] Univ Hitit, Dept Comp Technol, TR-19300 Corum, Turkey; [Erbay, Hasan] Univ Turkish Aeronaut Assoc, Dept Comp Engn, TR-06790 Ankara, Turkey; [Demir, Emre] Univ Hitit, Dept Biostat, TR-19040 Corum, Turkeyen_US
dc.contributor.institutionauthorAkmeşe, Ömer Faruk
dc.contributor.institutionauthorErbay, Hasan
dc.contributor.institutionauthorKör, Hakan
dc.contributor.institutionauthorDoğan, Gül
dc.contributor.institutionauthorDemir, Emre
dc.identifier.doi10.1155/2020/7306435
dc.authorwosidKör, Hakan / AAG-1869-2021
dc.authorwosidDemir, Emre / AAA-8193-2020
dc.authorwosidAkmeşe, Ömer Faruk / V-8861-2017
dc.authorwosidAkmeşe, Ömer Faruk / AAN-9222-2020
dc.authorwosidErbay, Hasan / F-1093-2016
dc.description.wospublicationidWOS:000531591600001en_US
dc.description.pubmedpublicationidPubMed: 32377437en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster