dc.contributor.author | Akmeşe, Ömer Faruk | |
dc.contributor.author | Doğan, Gül | |
dc.contributor.author | Kör, Hakan | |
dc.contributor.author | Erbay, Hasan | |
dc.contributor.author | Demir, Emre | |
dc.date.accessioned | 2021-11-01T15:05:10Z | |
dc.date.available | 2021-11-01T15:05:10Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Akmese, O. F., Dogan, G., Kor, H., Erbay, H., & Demir, E. (2020). The use of machine learning approaches for the diagnosis of acute appendicitis. Emergency medicine international, 2020. | en_US |
dc.identifier.issn | 2090-2840 | |
dc.identifier.issn | 2090-2859 | |
dc.identifier.uri | https://doi.org/10.1155/2020/7306435 | |
dc.identifier.uri | https://hdl.handle.net/11491/7154 | |
dc.description.abstract | Acute appendicitis is one of the most common emergency diseases in general surgery clinics. It is more common, especially between the ages of 10 and 30 years. Additionally, approximately 7% of the entire population is diagnosed with acute appendicitis at some time in their lives and requires surgery. The study aims to develop an easy, fast, and accurate estimation method for early acute appendicitis diagnosis using machine learning algorithms. Retrospective clinical records were analyzed with predictive data mining models. The predictive success of the models obtained by various machine learning algorithms was compared. A total of 595 clinical records were used in the study, including 348 males (58.49%) and 247 females (41.51%). It was found that the gradient boosted trees algorithm achieves the best success with an accurate prediction success of 95.31%. In this study, an estimation method based on machine learning was developed to identify individuals with acute appendicitis. It is thought that this method will benefit patients with signs of appendicitis, especially in emergency departments in hospitals. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Hindawi Ltd | en_US |
dc.relation.ispartof | Emergency Medicine International | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | [No Keywords] | en_US |
dc.title | The Use of Machine Learning Approaches for the Diagnosis of Acute Appendicitis | en_US |
dc.type | article | en_US |
dc.department | Hitit Üniversitesi, Tıp Fakültesi, Temel Tıp Bilimleri Bölümü | en_US |
dc.department | Hitit Üniversitesi, Tıp Fakültesi, Cerrahi Tıp Bilimleri Bölümü | en_US |
dc.department | Hitit Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.authorid | Akmeşe, Ömer Faruk / 0000-0002-5877-0177 | |
dc.authorid | Akmeşe, Ömer Faruk / 0000-0002-5877-0177 | |
dc.authorid | Erbay, Hasan / 0000-0002-7555-541X | |
dc.identifier.volume | 2020 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.department-temp | [Akmese, Omer F.] Kirikkale Univ, Univ Hitit, Dept Comp Technol, TR-19500 Corum, Turkey; [Dogan, Gul] Univ Hitit, Dept Surg Med Sci, TR-19040 Corum, Turkey; [Kor, Hakan] Univ Hitit, Dept Comp Technol, TR-19300 Corum, Turkey; [Erbay, Hasan] Univ Turkish Aeronaut Assoc, Dept Comp Engn, TR-06790 Ankara, Turkey; [Demir, Emre] Univ Hitit, Dept Biostat, TR-19040 Corum, Turkey | en_US |
dc.contributor.institutionauthor | Akmeşe, Ömer Faruk | |
dc.contributor.institutionauthor | Erbay, Hasan | |
dc.contributor.institutionauthor | Kör, Hakan | |
dc.contributor.institutionauthor | Doğan, Gül | |
dc.contributor.institutionauthor | Demir, Emre | |
dc.identifier.doi | 10.1155/2020/7306435 | |
dc.authorwosid | Kör, Hakan / AAG-1869-2021 | |
dc.authorwosid | Demir, Emre / AAA-8193-2020 | |
dc.authorwosid | Akmeşe, Ömer Faruk / V-8861-2017 | |
dc.authorwosid | Akmeşe, Ömer Faruk / AAN-9222-2020 | |
dc.authorwosid | Erbay, Hasan / F-1093-2016 | |
dc.description.wospublicationid | WOS:000531591600001 | en_US |
dc.description.pubmedpublicationid | PubMed: 32377437 | en_US |