Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKoçak, Cem
dc.contributor.authorDalar, Ali Zafer
dc.contributor.authorCağcağ Yolcu, Özge
dc.contributor.authorBaş, Eren
dc.contributor.authorEğrioğlu, Erol
dc.date.accessioned2021-11-01T15:05:06Z
dc.date.available2021-11-01T15:05:06Z
dc.date.issued2020
dc.identifier.citationKocak, C., Dalar, A. Z., Cagcag Yolcu, O., Bas, E., & Egrioglu, E. (2020). A new fuzzy time series method based on an ARMA-type recurrent Pi-Sigma artificial neural network. Soft Computing, 24(11), 8243-8252.en_US
dc.identifier.issn1432-7643
dc.identifier.issn1433-7479
dc.identifier.urihttps://doi.org/10.1007/s00500-019-04506-1
dc.identifier.urihttps://hdl.handle.net/11491/7115
dc.description.abstractAs it known in many studies, the fuzzy time series methods do not need assumptions such as stationary and the linearity required for classical time series approaches, so there is a huge field of study on fuzzy time series methods in the time series literature. Fuzzy time series literature has the studies which use both the various models of artificial neural networks and the different optimization methods of artificial intelligence jointly. In this study, a new fuzzy time series algorithm based on an ARMA-type recurrent Pi-Sigma artificial neural network is introduced. It is expected that the proposed method increases the forecasting performance for many real-life time series because of using more input which is the error term obtained from Pi-Sigma artificial neural network with recurrent structure. Therefore, it can be considered that the proposed method is based on an ARMA-type fuzzy time series forecasting model. In the proposed method, the training of recurrent ARMA-type Pi-Sigma neural network is performed by particle swarm optimization. The proposed method has been applied to a real-data set as well as simulated data sets of a real-life time series, and the obtained results have been compared with some other methods in the literature.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.ispartofSoft Computingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy Time Seriesen_US
dc.subjectRecurrent Pi-Sigma Artificial Neural Networken_US
dc.subjectParticle Swarm Optimizationen_US
dc.subjectARMA-type Fuzzy Time Seriesen_US
dc.subjectForecastingen_US
dc.titleA new fuzzy time series method based on an ARMA-type recurrent Pi-Sigma artificial neural networken_US
dc.typearticleen_US
dc.departmentHitit Üniversitesi, Sağlık Bilimleri Fakültesi, Hemşirelik Bölümüen_US
dc.authoridKoçak, Cem / 0000-0002-7339-7438
dc.authoridBaş, Eren / 0000-0002-0263-8804
dc.authoridEğrioğlu, Erol / 0000-0003-4301-4149
dc.identifier.volume24en_US
dc.identifier.issue11en_US
dc.identifier.startpage8243en_US
dc.identifier.endpage8252en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.department-temp[Kocak, Cem] Hitit Univ, Fac Hlth Sci, Corum, Turkey; [Dalar, Ali Zafer; Bas, Eren; Egrioglu, Erol] Giresun Univ, Dept Stat, Forecast Res Lab, Giresun, Turkey; [Yolcu, Ozge Cagcag] Giresun Univ, Dept Ind Engn, Forecast Res Lab, Giresun, Turkey; [Egrioglu, Erol] Univ Lancaster, Management Sci Sch, Dept Management Sci, Mkt Analyt & Forecasting Res Ctr, Lancaster, Englanden_US
dc.contributor.institutionauthorKoçak, Cem
dc.identifier.doi10.1007/s00500-019-04506-1
dc.authorwosidKoçak, Cem / AAP-6074-2021
dc.authorwosidEğrioğlu, Erol / AAE-4706-2019
dc.description.wospublicationidWOS:000495711400002en_US
dc.description.scopuspublicationid2-s2.0-85075189636en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster