İmkb mali ve sınai endeksleri’nin 2002-2010 dönemi için günlük oynaklığı'nın karşılaştırmalı analizi
Künye
Başcı, E. S. (2011). İmkb mali ve sınai endeksleri’nin 2002-2010 dönemi için günlük oynaklığı'nın karşılaştırmalı analizi. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi,12(2), 187-199.Özet
Bu çalışmada İMKB Mali(XUMAL) ve Sınai(XUSIN) endeksleri oynaklığı, endeks günlük kapanış fiyatları ile günlük en düşük ve en yüksek fiyat açısından karşılaştırmalı olarak tespit edilmektedir. İMKB Sınai endeksinde 159 firma yer almaktayken, İMKB Mali sektörde 81 firma yer almaktadır. Mali sektör ile Sınai sektör arasındaki etkileşim bir çok çalışmada incelenmiştir. Yatırımcılar açısından ise oynaklığın tespit edilmesi gelecek yatırım alternatifleri açısından önemlidir. Mali sektör ile Sınai sektör firmalarının birbirleri ile etkileşimleri dikkate alındığında endeks bakımından oynaklığın modellenmesi daha da önem kazanmaktadır. Oynaklığı modelleyebilmek için sabit ortalama ve varyanslı modeller yeterli olamamaktadır. Bollerslev (1986) tarafından önerilen genelleştirilmiş ARCH modeli (GARCH) ise varyansın zaman içerisindeki değişimini tahmin edebildiği için tercih edilmiştir. Bu çalışmada endeksin günlük en düşük ve en yüksek fiyat olgusundan yola çıkarak fark getirilerinin doğal logaritmasının oynaklığı tespit edilmektedir. Elde edilen bulgulara göre oynaklığı modellemek için GARCH (1,1) uygulanmış ve serilerin oynaklık kümelenmelerini içermesi ve asimetrik bilginin varlığı ile de TGARCH modeline geçilmiştir. TGARCH(1,1) modelinin en düşük ve en yüksek fiyat olgusu üzerine elde edilen serinin oynaklığını tahmin etmede daha başarılı bulunmuştur In this study, daily volatility in ISE financial index (XUMAL) and industrial index (XUSIN) are determined by examining daily closing price and range based data, which is the lowest and highest daily price. Industrial firms are listed 159 in ISE industrial index while financial firms are listed 81. The interaction between financial sector and the industrial sector has been much studied. Determination of volatility is important for investors to decide on future investment alternatives. As the interaction of financial sector and industrial sector firms is considered, the modeling of volatility of the index becomes even more important. Constant mean and variance models fall short of modeling volatility. Generalized ARCH model (GARCH) proposed by Bollerslev (1986) is preferred as it helps predicting the change in variance over time. In this study, volatility is calculated based on the lowest and highest daily price returns of the index. According to the results, GARCH (1,1) model is efficient in predicting the volatility of the series obtained by the lowest and highest price. Because of the series contains volatility clustering and asymmetric information is used threshold GARCH. According to the results TGARCH (1,1) model obtained on a case of the lowest and highest price volatility in the series are highly efficient