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Abstract 

Problem  Pancreatic ductal adenocarcinoma (PDAC) is considered a highly lethal cancer due to its advanced stage 
diagnosis. The five-year survival rate after diagnosis is less than 10%. However, if diagnosed early, the five-year survival 
rate can reach up to 70%. Early diagnosis of PDAC can aid treatment and improve survival rates by taking necessary 
precautions. The challenge is to develop a reliable, data privacy-aware machine learning approach that can accurately 
diagnose pancreatic cancer with biomarkers.

Aim  The study aims to diagnose a patient’s pancreatic cancer while ensuring the confidentiality of patient records. In 
addition, the study aims to guide researchers and clinicians in developing innovative methods for diagnosing pancre-
atic cancer.

Methods  Machine learning, a branch of artificial intelligence, can identify patterns by analyzing large datasets. The 
study pre-processed a dataset containing urine biomarkers with operations such as filling in missing values, cleaning 
outliers, and feature selection. The data was encrypted using the Fernet encryption algorithm to ensure confidential-
ity. Ten separate machine learning models were applied to predict individuals with PDAC. Performance metrics such 
as F1 score, recall, precision, and accuracy were used in the modeling process.

Results  Among the 590 clinical records analyzed, 199 (33.7%) belonged to patients with pancreatic cancer, 208 
(35.3%) to patients with non-cancerous pancreatic disorders (such as benign hepatobiliary disease), and 183 (31%) 
to healthy individuals. The LGBM algorithm showed the highest efficiency by achieving an accuracy of 98.8%. The 
accuracy of the other algorithms ranged from 98 to 86%. In order to understand which features are more critical 
and which data the model is based on, the analysis found that the features “plasma_CA19_9”, REG1A, TFF1, and LYVE1 
have high importance levels. The LIME analysis also analyzed which features of the model are important in the deci-
sion-making process.

Conclusions  This research outlines a data privacy-aware machine learning tool for predicting PDAC. The results 
show that a promising approach can be presented for clinical application. Future research should expand the dataset 
and focus on validation by applying it to various populations.
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Introduction
Pancreatic cancer has high mortality rates due to its often 
advanced stage at diagnosis. The incidence of pancreatic 
cancer ranks last among the top ten cancers. Nonethe-
less, the prognosis for survival remains significantly poor 
[1]. In 2022, cancer statistics indicate that pancreatic 
cancer is the third leading cause of cancer-related deaths 
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worldwide [2]. By 2030, it is projected that pancreatic 
cancer will be the second most prevalent cause of cancer-
related mortality on a global scale [3]. Early detection of 
cancer significantly enhances patient survival rates. Data 
suggest that patients diagnosed with early-stage pancre-
atic cancer exhibit a 5-year survival rate of 73.3% and a 
median survival time of 9.8 years. Conversely, the median 
survival time for unscreened pancreatic cancer patients is 
only 1.5 years [4].

Pancreatic cancer treatment options encompass sur-
gery, chemotherapy, radiation therapy, or a combination 
of these modalities [5]. Surgery is regarded as the most 
effective treatment option, providing the most signifi-
cant potential for curing pancreatic cancer and mark-
edly enhancing patient survival rates compared to other 
therapeutic modalities [6, 7]. However, the efficacy of 
surgical treatment is primarily determined by the stage 
at which the disease is diagnosed. Current techniques 
for the early diagnosis of pancreatic cancer are limited. 
Pancreatic cancer is usually already advanced by the time 
symptoms appear because there are no obvious symp-
toms in the early stages, and the tumor is located deep 
in the abdominal cavity. In this case, the chance of surgi-
cal intervention also decreases. Data indicate that in the 
majority of patients, tumors are significantly large, with 
the involvement of surrounding lymph nodes, blood ves-
sels, and nerves. Therefore, only 10–15% of patients are 
suitable for radical surgery [1]. Targeted therapies are a 
modality of cancer treatment. However, effective and 
widely available targeted drugs for pancreatic cancer 
remain insufficient. Recent research indicates that, unlike 
lung and breast cancers, pancreatic cancer lacks a specific 
molecular variant. In addition, some researchers propose 
that pancreatic cancer may involve multiple molecular 
variants. The nonspecific symptoms of pancreatic can-
cer often lead to misdiagnosis as other abdominal dis-
eases, resulting in ineffective treatment plans and delays 
in appropriate therapy [1, 8]. Therefore, developing more 
sensitive and early detection methods for pancreatic can-
cer is critical in the fight against pancreatic cancer [9].

Recent studies include studies on determining specific 
biomarkers for pancreatic cancer [10, 11]. When aug-
mented by artificial intelligence, biomarkers can be piv-
otal in the early diagnosis of diseases. While blood has 
traditionally been the primary medium for detecting bio-
markers, urine now stands out as a promising alternative. 
The kidneys’ continuous ultrafiltration process can lead 
to accumulating and higher concentrations of specific 
biomarkers in urine. Additionally, urine sampling is non-
invasive, enabling large-volume collection and repeatable 
measurements [12–14].

Additionally, urine has a less complex proteome and 
has less dynamic range, unlike blood [14–16]. Improving 

survival rates in pancreatic cancer patients may require 
in-depth research into early diagnosis and treatment [17]. 
Large amounts of biomedical data will emerge in such 
research processes. Effectively organizing, integrating, 
understanding, and analyzing big data is one of today’s 
scientific problems. This challenge can be overcome with 
artificial intelligence methods [18].

The advancement of artificial intelligence techniques 
has led to promising developments in identifying, treat-
ing, and predicting outcomes for pancreatic cancer [19]. 
Between 1997 and 2021, 587 publications related to the 
application of artificial intelligence for pancreatic cancer 
were discovered in the WoS database. Following 2018, the 
number of publications increased significantly, culminat-
ing in 188 by 2021. The cumulative number of documents 
published between 2017 and 2021 constitutes 72.4% of all 
publications. It is predicted that the number of studies in 
the literature in this field will continue to grow, and arti-
ficial intelligence applications in pancreatic cancer will 
become one of the most popular methods [20].

Despite technological advances in medical research, 
there are still some problems in the early diagnosis of 
pancreatic cancer. One of these is that the diagnosis is 
at an advanced stage due to the location of the pancre-
atic tumor, which limits treatment options. In addi-
tion, the lack of symptoms and their comparison with 
other diseases may delay accurate diagnosis. Another is 
that although biomarkers are critical for early diagno-
sis, the specificity and sensitivity of existing biomark-
ers may be insufficient [1, 8, 9]. Finally, sharing medical 
data may bring about significant privacy issues. For this 
reason, patient privacy should be considered in medical 
data analysis. This study proposes a machine learning 
approach with data privacy sensitivity and high diagnos-
tic accuracy to overcome the abovementioned problems. 
As evidenced by the high accuracy rates obtained in the 
study, diagnostic accuracy was significantly increased 
using the LGBM algorithm. An innovative and effective 
solution was presented, ensuring patient data privacy and 
security with the Fernet encryption algorithm. Thus, this 
study aims to improve patient outcomes and contribute 
to ongoing cancer research and treatment efforts.

This article proposes a new model for diagnosing pan-
creatic disease using urinary biomarkers, which offers 
significant potential for the early identification of PDAC. 
The paper was conducted with a publicly available dataset 
for pancreatic cancer diagnosis collected by Debernardi 
et  al. [21]. This research examines the impact of tech-
nologies on clinical practice, explores the contribution 
of early diagnosis to disease management, and reviews 
the existing literature in this domain. The article also 
aims to guide researchers and clinicians in developing 
new approaches to diagnosing pancreatic cancer. It also 
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highlights the significance of these technologies, which 
have the potential to enhance patient well-being and 
prolong life expectancy. Few studies use machine learn-
ing methods to diagnose PDAC using urinary biomarkers 
data. However, this article’s accuracy rate is higher than 
that of studies in the literature.

The main contributions of this study are as follows:

•	 Machine learning methods have been proposed to 
aid in accurately diagnosing PDAC based on urine 
biomarkers.

•	 During the pre-processing phase, data quality was 
evaluated and improved, which greatly impacted the 
accuracy of the diagnosis.

•	 Personal data confidentiality is ensured by encrypting 
the data set.

•	 The developed models achieved superior classifica-
tion performance.

•	 It offers a privacy-preserving framework in the 
machine learning pipeline, allowing the developer to 
work without direct access to the data.

•	 This comprehensive study includes many algorithms 
for pancreatic cancer diagnosis in the data set used in 
the study, compares their performances, and aims to 
find the best among them.

•	 It is thought that PDAC, which is one of the most 
lethal cancers when diagnosed late, can increase the 
chances of survival of patients if diagnosed early with 
new methods.

The other sections of the study are organized as fol-
lows: Sect.  "  Materials and methods": Materials and 
Methods: This section includes data pre-processing, data 
encryption, data visualization, and measurement meth-
ods. Sect.  "  Result and discussion": Results and Discus-
sion: This section presents the applied machine learning 
models’ performance results and discusses the findings. 
Sect. " Conclusion": Conclusion: This section summarizes 
the research’s general results, mentions its limitations, 
and suggests future studies.

Materials and methods
The implementation of the proposed method involves a 
series of steps. All of these steps are shown in Fig. 1. This 
study used a publicly available Debernardi et al. [21] data-
set collected from multiple centers. This dataset includes 
urinary biomarkers. The dataset was pre-processed to 
estimate the classifications, provide reliable and accept-
able results, and obtain better results in terms of model 
performance. Processes such as filling in missing values, 
cleaning outlier data, and feature selection were per-
formed in pre-processing. Thus, the data was ready for 
analysis. Data quality greatly affects the estimation result, 

and pre-processing is an important step in modeling [22]. 
After pre-processing, data visualization was performed 
to explain the variable interactions and transform com-
plex data into clear, understandable visuals. After the 
data set was divided into an 80% training set and a 20% 
test set, it was encrypted with the Fernet encryption 
algorithm to protect data privacy. The proposed method 
is based on the principle that encrypted data is sent to 
the data analyst who knows the key, and after decryption, 
analysis is performed using cross-validation. A total of 26 
machine learning algorithms were used to perform the 
analysis, and the results of the ten most commonly used 
algorithms that gave the best results were included in the 
study. The modeling process was evaluated using various 
classifier models with performance measures such as F1 
score, recall, precision, and accuracy. Finally, the results 
obtained were compared with those of other studies in 
the current literature to demonstrate the superiority of 
the proposed method. This process provides a safe, effec-
tive, and highly accurate method for early diagnosis of 
pancreatic cancer. Data analysis for this study was per-
formed using the Python programming language (version 
3.10).

Pre‑processing
Raw data often possesses various imperfections, such as 
inconsistencies, missing values, noise, and redundancies. 
Therefore, the performance of subsequent algorithms 
may be adversely impacted when dealing with low-qual-
ity data. In this case, appropriate pre-processing steps 
need to be applied. Implementing these pre-processing 
steps can substantially enhance the quality and reliabil-
ity of subsequent automated analyses and decision-mak-
ing processes [23]. These methods offer several benefits, 
including a more rapid and precise learning process and 
a better-organized raw data structure. It is important to 
recognize that data pre-processing often constitutes the 
most time-consuming and labor-intensive phase of the 
data analysis workflow [24]. Data visualization was also 
performed in the research to understand the data better. 
Figure 1 shows the proposed model.

During the pre-processing phase, it was noted that cer-
tain attribute records in the dataset contained outliers 
while others exhibited missing values. Figure  2 shows a 
graph that captures structural defects related to the ran-
domness of missing values. A total of 3 variables (stage, 
sample_id, benign_sample_diagnosis) that had too many 
missing values and did not contribute anything were 
removed from the data set. Gaps in variables with accept-
able missing values were filled with the mean. The aver-
age values within each class were considered while filling 
the gaps in the data set with the average method. Out-
liers were detected using the IQR (Interquartile Range) 
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method. Only approximately 19% of the plasma CA19_9 
variable was changed from the mean.

Data privacy
Machine learning offers a data-driven approach. This 
approach aims to develop the ability to make decisions 
in unknown test scenarios by using the problems of a 
specific task and data sets obtained from previous expe-
riences. This process aims to discover existing patterns 
to increase the ability to make correct decisions in new 
situations. This method is effective in theoretical and 
practical applications and strengthens the capacity to 
apply learned knowledge to new and unpredictable situ-
ations. However, this traditional problem-solving pro-
cess requires collaboration between machine learning 
practitioners and data providers, which requires techni-
cal expertise. This collaboration often requires sharing 

significant amounts of data, which can raise privacy con-
cerns because there is a risk of disclosure of shared sensi-
tive data [25].

Figure 1 is based on two physically separated areas. The 
first of these, “Side A,” takes place after the steps of data 
storage, data pre-processing, data visualization, data divi-
sion, encryption, and storage on the server. In the “Side 
B” development area, the implementer receives the data, 
and the transmitted decoding code evaluates the model, 
developing the machine learning application. In the 
study, the dataset was encrypted using the Fernet encryp-
tion algorithm. According to this algorithm, data is 
decoded and converted into a data frame object. Fernet, 
a symmetric encryption algorithm, is utilized to securely 
and efficiently encrypt and decrypt data. This algorithm 
is a variant of the AES (Advanced Encryption Stand-
ard) algorithm and provides key-based solid encryption. 

Fig. 1  The proposed model
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Fernet encrypts data using the specified key and decrypts 
data using the same key. This way, while the data is trans-
mitted securely, it can only be read if the receiving party 
knows the key. The Fernet algorithm is widely used to 
meet industry-standard secure data encryption require-
ments [26].

Understanding and visualizing data
Transforming abstract data into physical images, utiliz-
ing attributes such as length, location, shape, and color, 
provides compelling data narratives for individuals who 
prefer visual representation. Currently, organizations 
possess unprecedented amounts of data. Consequently, 
many organizations utilize data and sophisticated analyt-
ics to inform their strategic and tactical decision-making 
processes. In addition to providing a comprehensive 
overview of big data, data visualization is a natural fit 
to facilitate the interpretation of data analytics results 
by data scientists [27]. Data visualizations include illus-
trative and comparative graphs and tables to effectively 
convey concrete and abstract concepts. Various visuali-
zations have been made to simplify complex information 
in the data set, visually reveal relationships, and highlight 
patterns and trends. The name, data type, definition, and 
role of the variables are presented in Table 1.

Figure  3a shows the graph of the clinical records for 
the target variable. Of the 590 clinical records examined 
in the data set, 199 (33.7%) were with pancreatic cancer 
(PDAC samples) (3), 208 (35.3%) were with non-cancer-
ous pancreatic condition (benign hepatobiliary disease 

samples) (2), and 183 (31%) consists of healthy (control 
samples) (1) individuals. Figure 3b shows the gender dis-
tribution of clinical records according to the target varia-
ble. Accordingly, although the control group had a higher 
number of women, the incidence of PDAC diagnoses was 
observed to be higher in men. The number of patients 
with benign hepatobiliary disease samples is close to each 
other in both groups. Additionally, the % of female indi-
viduals in the data set is 50.7%.

Figure  4a shows the graph of the average age accord-
ing to the target variable, depending on gender. While 
the average age of women is higher in the control and 
PDAC sample groups, the average age of men is higher in 
patients with benign hepatobiliary disease samples. Fig-
ure 4b shows a box age plot for gender and target vari-
able. Accordingly, although there are some differences for 
gender in the age distribution box plots of each diagnos-
tic group, a similar situation is observed.

sA correlation matrix is a matrix that measures rela-
tionships between variables in a data set, shows the 
importance of variables, and helps discover relation-
ships and patterns. Figure 5 shows the correlation matrix 
of attributes. While some are weak, nearly all attributes 
exhibit linear correlations. Therefore, the correlation 
matrix is important for data analysis and model-building 
processes. The correlation matrix examines the relation-
ships between the target feature (diagnosis) and other 
features. The order of correlation with the dataset tar-
get variable ‘diagnosis’ in descending order is ‘plasma_
CA19_9’, ‘LYVE1’, ‘TFF1’, ‘REG1B’, sample_origin, 

Fig. 2  Structural defect plot of missing values
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Table 1  Dataset description

Categorical data pertains to information that cannot be categorized or represented numerically. In contrast, numerical data is expressed in numeric form, not as 
letters or words, and isn’t amenable to grouping. The target is the estimated output variable; input refers to attributes or features. BPTB Barts Pancreas Tissue Bank, LIV 
University of Liverpool, ESP Spanish National Cancer Research Centre, Madrid, Spain, UCL University College London

Name Type Description Role

Patient Cohort Categorical Cohort1 / Cohort2 Input

Sample Origin Categorical BPTB / LIV / ESP / UCL Input

Age Numerical Age (years) Input

Sex Categorical Female / Male Input

Plasma CA19_9 Numerical A tumor marker used in the detection of gastrointestinal system cancers Input

Creatinine Numerical A protein used to evaluate kidney function Input

LYVE1 Numerical A gene representing a protein in the lymphatic system Input

REG1B Numerical The gene name for the regenerating islet-derived 1 beta protein Input

TFF1 Numerical Trefoil factor 1 plays a role in the regenerative and reparative processes of the urinary tract Input

REG1A Numerical The gene name for the regenerating islet-derived protein 1 alpha Input

Diagnosis Categorical 1(Healthy controls) / 2 (Pancreatic patients) / 3(Pancreatic ductal adenocarcinoma) Target

Fig. 3  a Count of the target variable (diagnosis) b Count of Diagnosis by Sex

Fig. 4  a Pointplot of Age by Sex and Diagnosis b Boxplot of Age by Sex and Diagnosis
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‘REG1A’, ‘age’, ‘patient_cohort’, ‘sex’ and creatinine’ can 
be seen. Features with strong correlations are expected 
to facilitate the prediction of the target class and yield 
more meaningful results. The correlation matrix is an 
important tool for understanding the relationships 
between variables and using them in modeling processes. 
However, correlation coefficients only measure linear 
relationships; Therefore, it is necessary to use other ana-
lytical methods to evaluate non-linear relationships or 
causal relationships.

Measurement
The following metrics were utilized to gauge the classi-
fication performance [28]. In classification metrics, FP 
denotes false positives, TP represents true positives, TN 
stands for true negatives, and FN indicates false nega-
tives. P (Positive): It is called the positive class. N (Nega-
tive): It is called the negative class. P′: Total number of 
samples the model predicts as positive (TP + FP). N′: 
Total number of samples the model predicts as negative 
(TN + FN).

Accuracy provides an overall measure of the model’s 
ability to make accurate predictions over the entire data 
set.

Precision refers to the ratio of the units the model 
defines as positive to those actually positive.

Recall measures the model’s prediction accuracy for 
the positive class and evaluates how well it intuitively 
measures its ability to find all positive units in the 
dataset.

F1 Score combines Precision and Recall measure-
ments under the concept of harmonic mean.

(1)Accuracy =
TP + TN

TP + FP + TN + FN
=

TP + TN

P + N

(2)Precision =
TP

TP + FP
=

TP

P’

(3)Recall =
TP

TP + FN
=

TP

P

Fig. 5  Correlation matrix
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Machine learning models include the parameters by 
which they are trained to perform a specific task. These 
parameters affect the model’s performance. Hyperparam-
eters are the parameters that control the training process 
of machine learning algorithms and need to be adjusted. 
Hyperparameters are crucial values that influence the 
model’s complexity, the speed of the training process, and 
its overall performance. Different hyperparameter val-
ues can lead to different performance results of the same 
model. Therefore, finding the best hyperparameter val-
ues through hyperparameter tuning is important. In this 
study, hyperparameter optimization was made, and the 
values that gave the best results were investigated. The 
Grid Search method is used for hyperparameter opti-
mization. Grid Search evaluates each parameter com-
bination’s effect on the model performance and selects 
the combination with the highest accuracy. This process 
aims to increase the model’s accuracy, ensure its general-
izability, and optimize the training time. Table 2 lists the 
parameters used in the ten machine-learning techniques.

Result and discussion
Table 3 presents the outcomes of the ten machine-learn-
ing algorithms utilized in the study. The LGBM algorithm 
exhibited the highest accuracy, achieving a rate of 98.8%. 
The table provides each model’s Accuracy percentage, F1 
score, Precision, and Recall values. The LGBM algorithm 
proved the most successful method according to the 
accuracy percentage.

The main reasons behind the superior performance 
of the LGBM algorithm compared to other tested algo-
rithms may be as follows. With the tree-based structure 
and boosting technique, each new tree is optimized to 
correct the errors of previous trees. With feature selec-
tion and automatic feature engineering, LGBM can 

(4)F1− score =
2.Precision.Recall

Precision+ Recall

automatically ignore unimportant features, preventing 
the model from focusing on less important information 
and improving overall performance. Its good perfor-
mance and fast operation on imbalanced data sets are 
also important advantages. Providing wide control over 
hyperparameters helps the model best fit the data set to 
optimize its performance. In addition, the LGBM algo-
rithm provides high accuracy while keeping the model’s 
overfitting tendency under control. The combination of 
these factors has contributed to LGBM being an effective 
tool in the diagnosis of critical and complex conditions 
such as pancreatic cancer.

According to Table  4, the model correctly predicted 
that those with diabetes were 98.8%.

The importance of the features was determined using 
the LGBM algorithm on the dataset. Figure 6 can be used 
to understand which features are more critical for early 

Table 2  Parameters in algorithms

No Algorithm Parameters

1 LGBM {’colsample_bytree’: 0.8, ’learning_rate’: 0.1, ’max_depth’: 15, ’n_estimators’: 50, ’subsample’: 0.8}

2 Bagging Classifier {’bootstrap’: True, ’bootstrap_features’: False, ’max_features’: 0.5, ’max_samples’: 0.7, ’n_estimators’: 100}

3 CatBoost {‘depth’: 8, ‘iterations’: 40, ‘learning_rate’: 0.1}

4 Gradient Boosting Machines {’learning_rate’: 0.1, ’max_depth’: 3, ’min_samples_split’: 2, ’n_estimators’: 30}

5 Random Forest {’max_depth’: 9, ’max_features’: ’sqrt’, ’max_leaf_nodes’: 9, ’n_estimators’: 150}

6 CART​ {‘criterion’: ‘gini’, ‘max_depth’: None, ‘min_samples_leaf’: 4, ‘min_samples_split’: 2, ‘splitter’: ‘best’}

7 AdaBoost {’algorithm’: ’SAMME’, ’learning_rate’: 0.5, ’n_estimators’: 100}

8 Logistic Regression {‘C’: 100, ‘penalty’: ‘l2’, ‘solver’: ‘newton-cg’}

9 SVC {‘C’: 100, ‘degree’: 2, ‘gamma’: ‘scale’, ‘kernel’: ‘rbf’}

10 kNN {‘metric’: ‘manhattan’, ‘n_neighbors’: 5, ‘p’: 1, ‘weights’: ‘uniform’}

Table 3  Accuracy, F1 score, precision, and recall values of 
models using the dataset

Accuracy reflects the overall correctness of the model, while the F1-score 
serves as the harmonic mean of precision and recall. Precision measures 
correctly identified positive instances among all predicted positives, whereas 
recall denotes the proportion of actual positive instances the model correctly 
identifies

No Method Accuracy (%) F1 Precision Recall

1 LGBM 98.8 0.99 0.99 0.99

2 Bagging Classifier 98.6 0.99 0.99 0.99

3 CatBoost 95.9 0.96 0.96 0.96

4 Gradient Boosting 
Machines

95.5 0.96 0.96 0.96

5 Random Forest 93 0.93 0.93 0.93

6 CART​ 92.7 0.93 0.93 0.93

7 AdaBoost 90 0.91 0.91 0.91

8 Logistic Regression 89.4 0.89 0.90 0.90

9 SVC 87.4 0.88 0.88 0.88

10 kNN 86.7 0.87 0.87 0.87
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diagnosis of pancreatic cancer and which data the model 
is based on. In particular, while “plasma_CA19_9” is the 
variable with the highest feature importance, REG1A, 
TFF1, and LYVE1 features also have high importance 
levels and play a critical role in the model making accu-
rate predictions. This analysis can be useful both to 
increase the explainability of the model and to determine 
which biomarkers should be focused more for clinical 
applications.

Figure  7 describes the decision-making processes of 
the LGBMClassifier model using the LIME (Local Inter-
pretable Model-agnostic Explanations) method. Figure 7 
shows the model’s prediction probabilities in the upper 
left corner; here, the model predicts “Class 2” with 99% 
probability. The upper right corner shows the feature 

values ​​the model considers in the decision-making pro-
cess. The LIME plot in the middle section shows the fea-
tures contributing to the model’s “Class 2” prediction. 
Each feature and its contribution to the classification 
decision is shown. The contributions favoring Class 2 and 
other classes are shown in different colors. The features 
contributing to the “Class 2” prediction are: “plasma_
CA19_9” value is 0.31, “LYVE1” value is 0.25, “age” value 
is 0.20, “REG1B” value is 0.04 and “TFF1” value is 0.04. 
It appears that biomarkers such as “plasma_CA19_9”, 
“LYVE1”, and “age” play an important role in classify-
ing the sample as “Class 2”. Figure 7 provides a detailed 
breakdown of which features of the model are important 
in the decision-making process and how the values ​​of 
these features contribute to the model’s prediction.

Table 4  Results of LGBM

Precision denotes the proportion of correctly identified positive instances among all predicted positives, whereas recall represents the ratio of correctly identified 
positive instances to all actual positives

Accuracy: 98.8% True 1 True 2 True 3 Total Class Precision

Pred. 1 183 0 0 183 1 0.99 
(weighted 
avg)

Pred. 2 0 203 2 205 0.99

Pred. 3 0 5 197 202 0.98

Total 183 208 199 590

Class Recall 1 0.98 0.99

0.99 (weighted avg)

Fig. 6  Feature Importance Distribution with LGBM
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Machine learning and deep learning algorithms can 
increase cancer diagnosis accuracy, cost-effective-
ness, and speed. As these algorithms develop, they are 
expected to play an increasing role in cancer treatment. 
Therefore, further research is needed to broaden the 
perspective on this research area and provide a com-
prehensive view by reviewing the literature [29]. There 
are many studies on artificial intelligence in the medical 
field. For example, in the Seyala and Abdullah studies, 
the effectiveness of penalty methods was emphasized 
by analyzing longitudinal data of kidney failure 
patients with nonparametric clustering methods [30]. 
Muhammed et  al. designed the Multi-Cancer Multi-
Omics Clinical Dataset Laboratories (MCMOCL) 
schemes that include federated auto-encoder and 
XGBoost methods for prediction. The aim is to collect 
different trained and tested cancer features while load-
ing patient data and to determine the correct cancer 
types in the system. Also, a 256-bit advanced standard 

encryption (AES) based encryption and decryption 
process was performed [31].

A few researchers have used the data set used in the 
study in predictive analyses. However, there are many 
studies in the literature on PDAC prediction. Table  5 
shows some studies conducted with different and identi-
cal data sets and various methods for predicting pancreas 
cancer diagnosis. Variations in prediction percentages 
arise from methodological differences in datasets, algo-
rithms, and studies. The dataset size and the number of 
features can substantially impact the algorithm’s perfor-
mance. The reviewed studies show that the prediction 
accuracy is between 72.91% and 97%. This study achieved 
a very high success with 98.8% accuracy.

There are a limited number of studies using the data-
set in this study. In the study by Acer et  al. [32], seven 
machine learning classifiers (support vector machine 
(SVM), naive Bayes (NB), k-nearest neighbors (kNN), 
random forest (RF), light gradient boosting machine 

Fig. 7  Explaining model decision processes using LIME with LGBM
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(LightGBM), AdaBoost, and gradient boosting classifier 
(GBC)) were used to detect PDAC disease on the same 
dataset in Table 5. A result of 72.91% was achieved with 
GBC in triple classification. Karar et  al. [33] used the 
same dataset to develop a new and efficient 1D CNN-
LSTM model for early PDAC diagnosis, using four pro-
teomic urinary biomarkers: creatinine, LYVE1, REG1B, 
and TFF1. In another study using the same data, Mal-
lipudi et al. [34] classified pancreatic cancer using SVM, 
Extra Trees, Decision Trees, and Random Forest meth-
ods. When the values ​​obtained from these methods were 
compared, Random Forest achieved the highest success 
with 86.34%. Finally, in the study conducted by Laxmi-
narayanamma et  al. [35] using urine biomarkers with a 
CNN model, 95% success was achieved.

In this study, machine learning algorithms were used 
for PDAC diagnosis. A total of ten different machine 
learning algorithms were applied for PDAC diagnosis. 
The LGBM algorithm achieved the highest success rate 
with an accuracy rate of 98.8%.

Table  5 also includes studies using different data sets 
on pancreatic cancer. In the study by Baig et  al. [36], 
the SVM method was used to predict whether sur-
vival after surgery was less than two years, and results 
of 75% accuracy, 41.9% sensitivity, and 97.5% specificity 
were obtained. Almeida et al. [37] achieved an accuracy 
of 85.71% with the ANN method in their study using 
genetic biomarker data to diagnose PDAC. Lee et al. [38] 
conducted a study using the Taiwan Health Insurance 
Database (NHIRD) between 2000 and 2009 to predict 
pancreatic cancer, achieving an accuracy of 77% with the 
Logistic regression model. In their study, which aimed 
to identify non-invasive miRNA biomarkers and estab-
lish a model for PC diagnosis, Lee et al. [39] achieved an 
accuracy of 93% with SVM. Si et al. [40] achieved 87.6% 

accuracy in diagnosing PDAC using deep learning meth-
ods using a dataset obtained from CT abdominal images 
from 319 patients. Naito et  al. [41] developed a model 
using endoscopic ultrasonography-guided fine-needle 
biopsy (EUS-FNB) that accurately detected difficult 
cases of isolated and low-volume cancer cells, achieving 
an accuracy of 94%. Wei et  al. [42] constructed a novel 
multi-domain fusion model of radiomics and deep learn-
ing features based on F-fluorodeoxyglucose positron 
emission tomography/computed tomography (F-FDG 
PET/CT) images. This model demonstrated a diagnostic 
performance of 90.1% accuracy in noninvasively distin-
guishing PDAC and AIP using multi-domain features.

Pancreatic cancer can be challenging to diagnose 
because the pancreas is a complex and deeply located 
organ. The extensive vascularization around the pancreas 
facilitates the swift dissemination of cancer, enhancing its 
aggressiveness. Common symptoms of pancreatic cancer 
encompass abdominal pain, alterations in stool consist-
ency, nausea, bloating, concurrent conditions like diabe-
tes and jaundice, abnormal liver function test results, and 
weight loss [7]. While radiographic imaging-based stud-
ies are regarded as the primary method for pancreatic 
cancer screening, such screening is not recommended 
for asymptomatic individuals owing to the high costs and 
the relatively infrequent occurrence of pancreatic cancer 
[43].

PDAC has high mortality rates, primarily because it 
is often diagnosed at advanced stages of progression. 
Therefore, studies on early diagnosis of this disease with 
artificial intelligence can help treatment and increase 
survival rates. Although AI has unique advantages, many 
people are still concerned about its use in clinical trials. 
For instance, no single model can address every problem, 
as each model has its specific range of applicability [44]. 

Table 5  Reported classification accuracies of different classifiers in the literature

Authors Data Year Method Best Accuracy

1 Acer et al. [32] Urine biomarkers 2023 GBC 72.91%

2 Karar et al. [33] Urine biomarkers 2023 1D CNN-LSTM 97%

3 Mallipudi et al. [34] Urine biomarkers 2024 Random Forest 86.34%

4 Laxminarayanamma et al. [35] Urine biomarkers 2022 CNN 95%

5 Baig et al. [36] Urine biomarkers 2021 SVM 75%

6 Almeida et al. [37] Genetic biomarkers 2020 ANN 85.71%

7 Lee et al. [38] Urine Proteomic Biomarkers 2023 Logistic regression 77%

8 Lee et al. [39] Identified (miRNA) biomarkers 2021 SVM 93%

9 Si et al. [40] CT images 2021 FEE-DL 87.6%

10 Naito et al. [41] Endoscopic ultrasound 2021 Deep Learning 94%

11 Wei et al. [42] F-FDG PET/CT 2023 Deep Learning 90.1%

12 Akmeşe (This study) Urine biomarkers 2024 LGBM 98.8%
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However, the transparency and interpretability of artifi-
cial intelligence may be affected by patient privacy, inter-
pretability of the algorithm, publication bias, etc., which 
makes it difficult due to factors. It is necessary to solve 
these problems for the future of artificial intelligence in 
clinical applications [45–47].

Machine learning techniques can predict whether 
patients have cancer using biomarkers as attributes. 
Biomarkers are molecules that indicate the presence or 
absence of disease. Large amounts of patient data have 
significant potential for early diagnosis of diseases. Utiliz-
ing biomarkers for diagnosing pancreatic cancer may be 
crucial in identifying the disease early, thereby improving 
patients’ quality of life and increasing survival rates.

The medical diagnosis process is intricate and vital, 
necessitating real patient data, comprehensive knowl-
edge of medical literature, and clinical expertise, as it 
encompasses numerous unpredictable scenarios. Clini-
cal decisions are primarily guided by the perceptions and 
experiences of physicians [48]. Nevertheless, patients 
might not consistently articulate their symptoms accu-
rately. Moreover, the exponential increase in data vol-
ume presents further challenges in the decision-making 
process. Urinary biomarkers (LYVE1, REG1B, TFF1, 
and Creatinine) provide a promising, non-invasive, and 
cost-effective approach for PDAC diagnosis [33]. This 
predictive model has the potential to raise awareness of 
pancreatic cancer risk and offer patients a straightfor-
ward tool for early screening during the critical period 
when the disease can still be effectively treated.

The main innovation of this study is that it presents a 
machine-learning approach that prioritizes data privacy 
for the diagnosis of pancreatic cancer. The use of urine 
biomarkers and the application of advanced machine 
learning algorithms on these biomarkers create a differ-
ence compared to the general studies in the literature. 
This study achieved high accuracy rates and considered 
the need to protect patient privacy.

The dataset used in this study consists of data col-
lected from specific centers. Although the analyses were 
performed with data obtained from different regions, 
collecting data from a wider geography and different pop-
ulations may increase the generalizability of the findings. 
Future studies should validate the results using larger 
and more diverse datasets. While machine learning algo-
rithms offer high accuracy rates, decision-making pro-
cesses are often described as a “black box”. This can make 
it difficult to understand how the model makes deci-
sions in clinical applications. Although steps were taken 
towards the explainability of the model in this study, this 
issue needs to be addressed in more depth. Encryption 
techniques were used to protect the confidentiality of the 
data in the study. However, since the data is processed 

before encryption in the pre-processing phase, data con-
fidentiality and ethical concerns cannot always be com-
pletely eliminated. This situation can become a bigger 
problem, especially when working with larger and more 
sensitive datasets. The biomarkers used in the study 
provide important information for the early diagnosis 
of pancreatic cancer. However, the lack of different bio-
markers may limit the study’s results. In addition, studies 
can be designed by combining different types of datasets. 
For example, including radiological images in the analysis 
may increase the accuracy of the model and its usefulness 
in clinical applications. In conclusion, these limitations 
indicate that the findings of the study should be inter-
preted with caution and that these limitations should be 
addressed in future research. Future studies are expected 
to overcome these limitations with larger data sets and 
improved explainability methods.

Conclusion
This study makes a significant contribution to using 
machine learning algorithms to diagnose pancreatic 
PDAC. The theoretical implications of this study, which 
focuses on urine biomarkers, reveal that advanced 
machine learning algorithms such as LGBM have great 
potential to increase the accuracy and early diagnosis of 
PDAC. A total of ten different machine learning algo-
rithms were applied to diagnose PDAC. The LGBM algo-
rithm achieved the highest success rate with an accuracy 
rate of 98.8%. The accuracy rates of other algorithms 
ranged from 86 to 98%. The findings show that ensemble 
learning models generally outperform traditional classi-
fiers in the study dataset. This study is important because 
it is low-cost, provides the advantage of rapid diagnosis, 
can increase the recognition of pancreatic cancer risk, 
takes into account the need to protect patient confidenti-
ality, and can offer early diagnosis advantages to patients 
with pancreatic cancer.

However, there are some limitations to this study. The 
fact that the dataset was collected from specific centers 
and covered narrow geography, the difficulty of under-
standing how machine learning models make decisions in 
clinical applications, the fact that ethical concerns about 
data privacy cannot always be completely eliminated, and 
the lack of different biomarkers and different datasets can 
be given as examples of these limitations.

In future research, several suggestions can be built on 
the findings of this study. First, expanding the dataset 
to include a wider geography, a larger population, and a 
wider range of biomarkers can increase the model’s gen-
eralizability. Second, integrating these machine learning 
models with clinical decision support systems can enable 
their adoption in medical settings. Third, additions can 
be made to address concerns about data privacy. Finally, 
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developing interpretable machine learning models that 
make decision-making processes transparent can ensure 
that healthcare professionals use these tools reliably and 
effectively.
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