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Considering the ever changing market conditions, it is essential to design responsive and flexible
manufacturing systems. This study addresses the multi-period Dynamic Cellular Manufacturing
System (DCMS) design problem and introduces a new mathematical model. The objective function of
the mathematical model considers inter-cell and intra-cell material handling, machine purchasing, layout
reconfiguration, variable and constant machine costs. Machine duplication, machine capacities, operation
sequences, alternative processing routes of the products, varying demands of products and lot splitting
are among the most important issues addressed by the mathematical model. It makes decisions on many
system related issues, including cell formation, inter- and intra-cell layout, product routing and product
flow between machines. Due to the complexity of the problem, we suggest two heuristic solution
approaches that combine Simulated Annealing (SA) with Linear Programming and Genetic Algorithm
(GA) with Linear Programming. The developed approaches were tested using a data set from the litera-
ture. In addition, randomly generated test problems were also used to investigate the performance of the
hybrid heuristic approaches. A problem specific lower bound mathematical model was also proposed to
observe the solution quality of the developed approaches. The suggested approaches outperformed the
previous study in terms of both computational time and the solution quality by reducing the overall
system cost.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays manufacturing systems are expected to deliver large
variety of products in smaller lot sizes with competitive prices. Cel-
lular Manufacturing (CM) is among modern manufacturing
philosophies that meets these requirements. In a CM System
(CMS), products that are similar in their processing requirements
are grouped into part families. The machines that process a family
of products are grouped together to attain potential benefits of the
CMS. Benefits of the CMS include reducing setup times, reduction
in material flow and work-in-process inventory, easier and better
system management, improved overall system efficiency and
product quality (Baykasoğlu, 2004; Urban, Chiang, & Russell,
2000). However, processing all of the processing requirements of
a product family in a single machine cell is an ideal. Under real
manufacturing conditions it is either uneconomical or practical
to design mutually independent cells. Therefore, exceptional ele-
ments is common in CMS manufacturing environments (Wang &
Sarker, 2002). An exceptional element is a product that is needed
to be produced in more than one cell and it causes inter-cell trans-
fer of materials. In some cases, elimination of exceptional elements
is possible, but requires additional machine investment.

When designing a Cellular Manufacturing System (CMS) many
decisions must be taken into account. Some of these decisions
are as follows: (1) cell formation (CF) through grouping of machi-
nes into cells, (2) layout of machines within cells (intra-cell layout)
and (3) layout of cells (inter-cell layout) (Wemmerlöv & Hyer,
1986). As stated in Alfa, Chen, and Heragu (1992) these decisions
are interrelated and addressing them simultaneously is important
for a successful CMS design. However, each of these decisions is
proven to be complex (Mak, Wong, & Wang, 2000; Sahni &
Gonzalez, 1976), thus addressing of these decisions simultaneously
is a difficult task. Therefore, most of the studies either consider
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some of these decisions or they handle all, but in a sequential
fashion.

Short product life cycles and rapid changes in product demands
require reconfiguration of CMS from time to time. Therefore, CMS
design must be carried out taking the changes in the demand into
account. In CMS and facility layout literature, in order to handle the
changes in demand of products, three main approaches are pro-
posed. In the first approach, resources are rearranged by consider-
ing only processing requirements of the imminent future. This
approach is called agile strategy and requires availability of agile
resources (e.g. machine tools that can be easily relocated). The sec-
ond approach is called robust strategy. It is based on designing a
single layout that would be effective over the planning horizon.
Although these approaches are easier and simplifies the multi-
period design problem, both of these approaches are able to pro-
vide good layout solutions in extreme conditions. For example,
agile strategy is useful only if the rearrangement costs are negligi-
ble. On the other hand, robust strategy is capable of finding layout
solutions if the rearrangement costs are prohibitively high. In these
strategies, rearrangement costs are either neglected or not even
incurred by not changing the layout. Introduced by Rheault,
Drolet, and Abdulnour (1995), Dynamic Cellular Manufacturing
System (DCMS) design basically considers changes in product
mix and demand. In addition to the single period CMS design deci-
sions, DCMS design involves multi-period cell reconfiguration deci-
sions. The reconfiguration of a manufacturing system involves
some costly activities such as machine relocation, installation
and uninstallation costs, lost production time and relearning costs
(Balakrishnan & Cheng, 2007). In a DCMS design, the length of the
time periods should be determined carefully and it must be rea-
sonable to make a trade-off between cumulative increased flow
costs of inefficient layout and rearrangement costs. If the time per-
iod is selected too short or too long, the problem becomes one of
the extreme cases that were discussed above because, relative
weight of the cumulative increased flow costs of inefficient layout
over rearrangement costs changes significantly. Gupta and
Seifoddini (1990) found out that one-third of USA companies rear-
range their manufacturing facilities every two years. Moreover,
Marsh, Meredith, and McCutcheon (1997) concluded that layout
changes could occur within six months from the last rearrange-
ment of a cell.

In this study, we focused on a comprehensive CMS design prob-
lem with the consideration of rearrangements in multi-period
design horizon. We first present a comprehensive mathematical
model that incorporates important DCMS design features including
inter-cell layout, intra-cell layout, alternative process routes, dupli-
cated machines, machine capacities, processing times, dynamic
product demand, lot splitting, machine installation and uninstalla-
tion costs, material handling costs, processing costs, machine pur-
chasing costs, and constant machine costs. We also propose two
different Linear Programming (LP) embedded meta-heuristic
approaches for solving this problem. The first one is the integration
of LP and Simulated Annealing (SAeLP) and the second is the inte-
gration of LP and Genetic Algorithm (GAeLP). The efficiencies of
the SAeLP and GAeLP are shown by comparing our results with
those of a previous study (Kia et al., 2012) and a problem specific
lower bound mathematical model. The results have shown that
both SAeLP and GAeLP are powerful techniques in terms of both
solution quality and computational time. The contribution of this
study is manifold: (1) the mathematical model of Kia et al. (2012)
is improved, (2) two LP embedded meta-heuristics are suggested
and their efficiency is demonstrated, (3) a lower bound mathemat-
ical model that provides tight lower bound results for the test sam-
ples is provided. A brief review of DCMS design will be given in
Section 2. Then, in Section 3 the mathematical model of the prob-
lem is introduced. The solution methodology is described in detail
in Section 4. In order to illustrate the SAeLP and the GAeLP, the solu-
tion steps of a small sample problem are given in Section 5. Finally,
comparative computational results and the conclusions are
included in the Sections 6 and 7, respectively.

2. Literature

Both CMS and DCMS design literatures are very rich. In this sec-
tion, only some of the remarkable studies are discussed.
Harhalakis, Ioannou, Minis, and Nagi (1994) took product demand
changes into account, but they tried to obtain a single design that is
effective across the periods in the planning horizon. Rheault et al.
(1995) introduced the concept of DCMS design with reconfigura-
tion capability. Their study involves production scheduling, routing
and loading of parts. The trade-off between material handling costs
(MHC) and reconfiguration costs are presented by using an integer
programming model. Wilhelm, Chiou, and Chang (1998) proposed
a multi-period cell formation model aimed at minimizing reconfig-
uration, additional machine purchasing and inter-cell material
handling costs. In order to handle the variation in product mix,
Askin, Selim, and Vakharia (1997) suggested a four-stage tech-
nique. Initially, operations were assigned to machine types, and
then operations are assigned to specific machines. In the following
stages the manufacturing cells were determined and the design
was improved. Chen (1998) developed a mixed integer mathemat-
ical programming model for DCMS design with reconfiguration
issue. The objective function minimizes inter-cell material han-
dling, reconfiguration and machine costs. Wicks and Reasor
(1999) proposed another model with reconfiguration, in which
they pursued minimization of the reconfiguration and constant
machine costs.

Operation sequence of the products and machine replication
were the other aspects considered during DCMS design. Chen
and Cao (2004) developed a method to concurrently design CMS
and to plan manufacturing activities. Their Tabu Search based
method minimizes the sum of inter-cell material handling, inven-
tory holding, cell formation costs. Although they took the machine
capacities and machine duplication into account, they assumed
that there was a single process plan for each product type. There-
fore, processing costs were not included in the model. In their
another study (Cao & Chen, 2005), they defined product demand
in a probabilistic scenarios and they used a two stage Tabu Search
based algorithm to minimize machine costs and inter-cell material
costs. Similar to their previous study, they did not add processing
costs to the objective function. In their study, Tavakkoli-
Moghaddam, Aryanezhad, Safaei, and Azaron (2005a, 2005b) pro-
posed a comprehensive mathematical model assuming alternative
process routings, operation sequence, machine capacities and
machine duplication. In the objective function, inter-cell material
handling, variable and constant machine costs and reconfiguration
costs were included. They solved this model using Simulated
Annealing, Tabu Search and Genetic Algorithms. In another study,
Tavakkoli-Moghaddam et al., 2005a, 2005b solved a similar model
using Memetic Algorithms. Defersha and Chen (2008a) focused on
cell formation under dynamic manufacturing conditions. In addi-
tion to the model properties of Tavakkoli-Moghaddam et al.
(2005a, 2005b), they considered workload balancing and machine
separation constraints as well. Their objective function comprises
the sum of machine maintenance and overhead costs, machine
procurement cost, inter-cell material handling cost, machining
and setup costs, tool consumption cost, and system reconfiguration
cost. Then, they solved this model by using a parallelized Genetic
Algorithm. Nsakanda, Diaby, and Price (2006) included the option
of outsourcing in their model while. Aryanezhad, Deljoo, and
Mirzapour Al-e-hashem (2009) integrated worker assignment
decisions into the dynamic cell formation decisions.
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Egilmez, Süer, and Huang (2012), considered uncertainty of
product demand and process durations in CMS system design
and determined cell and product family formations while mini-
mizing the risk. Mahdavi, Aalaei, Paydar, and Solimanpur (2012),
solved the cell formation problem by employing three dimen-
sional machine part worker assignment incidence matrix. In their
study, they proposed a mathematical model in order to minimize
exceptional elements and voids in a CMS. They mainly focused on
cell formation problem. Chang, Wu, and Wu (2013) developed a
methodology that makes cell formation, inter-cell layout and
intra-cell layout decisions simultaneously. They implemented
Tabu-Search meta-heuristic for the solving of the comprehensive
problem. Operation sequences, alternative process routings are
taken into account. Mahdavi, Teymourian, Baher, and Kayvanfar
(2013) presented a mathematical model that addresses cell
formation and cell layout decisions simultaneously. Their
model minimizes costs of inter-cell and intra-cell movements
and the number of exceptional elements. Zeidi, Javadian,
Tavakkoli-Moghaddam, and Jolai (2013) developed a multi-
objective approach based on Genetic Algorithm and neural net-
works for incremental CMS design. Mohammadi and Forghani
(2014) presented an integrated approach for designing CMS. They
considered various design elements such as part demands,
alternative process routings, operation sequences, process times,
capacity and dimensions of machines. Their model allows subcon-
tracting of parts.

As a recent comprehensive study, we focused on the study of
Kia et al. (2012). In this study, authors integrated cell layout and
cell formation decisions in a dynamic environment. They
reckoned with various CMS design attributes including inter- and
intra-cell layout, cell formation, machine duplicates, machine
capacities, constant and variable machine costs, lot splitting,
operation sequence and alternative process routings, layout and
cell reconfiguration, machine purchasing.

As discussed in the previous paragraphs, the DCMS design
literature is rich and has been flourishing continuously. Along with
the increase in the computational capacity of new generation
computers, mathematical models include more and more design
attributes. Moreover, some new approaches are developed to solve
this challenging problem. One of these approaches is the integra-
tion of LP into metaheuristics. Synergies created through integra-
tion of LP and metaheuristics improve algorithms in terms of
running time and solution quality. Although LP integrated
approaches is not as prominent as pure metaheuristic approaches
in DCMS design literature, the capabilities of this integration is
promising, if it is implemented properly. In order to have a
detailed review on the integration of LP into metaheuristics,
researchers can refer to the literature survey of Raidl and
Puchinger (2008).

There are very few implementations of LP integration in CMS
design literature. In one of these studies, Defersha and Chen
(2008b) proposed an LP embedded Genetic Algorithm to solve
the integrated cell formation and lot sizing problem considering
product quality. The algorithm searches over the integer vari-
ables of the problem. For each visited integer solution, the corre-
sponding values of the continuous variables are determined by
solving an LP sub-problem. In their recent study, Rezazadeh,
Mahini, and Zarei (2011), focused on virtual cell formation prob-
lem considering operation sequence, alternative routings,
machine capacities, lot splitting, maximum cell size and work-
load balancing. In order to solve the problem, they developed
an LP embedded particle swarm optimization algorithm with a
Simulated Annealing-based local search engine. To the best of
our knowledge, these are the only studies that solve a CMS
design problem by employing an LP embedded meta-heuristic
approach. These studies only focus on only cell formation issue
in cellular manufacturing, but our study focuses on DCMS design
with numerous design features including layout issues. Consider-
ing the problem’s comprehensiveness and hardness, the proposed
methodology is suitable for solving such a complex problem.
However, LP integration to a meta-heuristic have never been
implemented to such a comprehensive DCMS design problem
in the CMS design literature.
3. Problem formulation and description of the mathematical
model

We propose a mathematical model that considers numerous
aspects of DCMS design. The model considers many of the possible
aspects of DCMS design. Theses aspects include: inter- and intra-
cell layout design, alternative processing routes, operation
sequence, lot splitting, machine installation and uninstallation,
location based inter-cell and intra-cell material handling costs,
variable and constant machine costs as well as machine purchasing
decisions and costs. Throughout the development of the mathe-
matical model emphasis was put upon the work of Kia et al. (2012).

3.1. Mathematical model

Model assumptions
The assumptions of the non-linear mixed-integer programming

model are as follows:

1. Demand for each product type is varying in subsequent peri-
ods and the demand is known deterministically prior to the
design. Demand must be satisfied in a given period. Demand
for each product is expressed in number units.

2. There is an operation sequence for each product.
3. Each operation can be performed in different types of machi-

nes and possibly with different processing times.
4. Machines are assumed to be multi-purpose ones. Namely,

they are capable of performing different operations of differ-
ent products.

5. There is a constant cost for a machine per period. This cost is
incurred as an overhead cost and does not depend on the
utilization of the machine. This cost is expressed in mone-
tary terms (e.g. $, €, etc.).

6. Each machine has a limited capacity and several duplicates
of the machines are allowed. Machine capacities are
expressed in time units (e.g. h, days).

7. The variable cost of machines is dependent on the assigned
workload. Variable cost of machines is expressed in mone-
tary terms in a unit time (e.g. $/h).

8. If a machine is purchased in a period, it must stay on the
shop floor in the following periods. Removal of machines
from the shop floor is not assumed.

9. There is no physical partitioning between cells and a loca-
tion can be assigned to different cells in different periods.

10. Replacement cost of machines consists of installation and
uninstallation costs. When a machine is moved from one
location to another, both installation and uninstallation
costs are incurred. Regardless of the purchase period, instal-
lation cost is incurred for every new machine. Both installa-
tion and uninstallation costs are expressed in terms of
money per each relocation.

11. The cost of carrying items between two locations is propor-
tional to the number of carried products. Both inter-cell and
intra-cell material handling costs are linearly proportional to
the distance between the locations of the machines. Distance
between the locations are expressed in units of length
(e.g. m, etc.).
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12. All machines have the same dimension. Therefore any
machine can be assigned to any location. However, only
one machine can be assigned to a location.

13. The maximum number of cells and the minimum and the
maximum number of machines in cells are assumed to be
known in advance. Cell capacities can be determined by sys-
tem designers considering some design issues. For example,
too many machines may cause complicated controlling of
the cell. On the other hand, very few machines in a cell
causes increased inter-cellular material movements but, it
reduces intra-cellular movements.

14. Positions and shapes of the cells are not predetermined.
15. Splitting of lots is allowed. Namely, an operation of a pro-

duct can be split between two machines of same or different
types, in a given period.

Indexing sets:

p: index for product types,
t: index for periods,
r: index for operations,
c, d: indices for cells,
k, l: indices for locations,
i, j: indices for machine types.

Parameters:

T: Number of planning periods in the planning horizon.
P: Number of product types to be produced.
N: Maximum number of cells.
Rp: Number of operations for product type p.
K: Number of locations in the shop floor.
M: Number of machine types.
Ep: Inter-cellular material handling cost per product type p, per
unit distance (e.g. $/m).
Ap: Intra-cellular material handling cost per product type p, per
unit distance (e.g. $/m).
Dpt: Demand for product type p, in period t.
kkl: Distance between locations k and l (e.g. m).
di: Installation cost of machine type i (e.g. $).
hi: Uninstallation cost of machine type i (e.g. $).
bi: Overhead cost of machine type i in each period (e.g. $).
li: Unit time variable cost of machine type i (e.g. $/h).
ci: Purchasing cost of machine type i (e.g. $).
U: The maximum number of machines that can be assigned to a
manufacturing cell.
L: The minimum number of machines that can be assigned to a
manufacturing cell.
ppri: Processing time of rth operation of product type p, on machine
type i.(e.g. h).
Ci: Capacity of machine type i in each period (e.g. h).
apri : 1, if rth operation of product p can be processed by machine
type i, 0, otherwise.

Decision variables:

xckit: 1, if a machine of type i is placed on location k and assigned
to cell c in period t, and 0 otherwise.
ykit: 1, if location k is either empty or is assigned to a machine
type other than i in period t � 1, and location k is assigned to
machine type i in period t. and 0 otherwise.
y0kit: 1, if a machine of type i is located on location k in period
t � 1, but it is either removed or replaced by a machine of
different type in period t.
wprckit: Number of products of type p, processed in operation r on
machine type i which is assigned to location k cell c in period t.
Wprcdklijt: Number of products of type p, processed by operation r,
onmachine type i, located in location kwhich is assigned to cell c
and moved to be processed by operation r þ 1, on machine type
j, located in location l which is assigned to cell d, in period t.
Qit: Total number of machines of type i added to the layout at
the beginning of the period t.

Mathematical model:

Objective function
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The objective function (1) to be minimized consists of eight
terms The first term represents inter-cellular material handling
cost and it is incurred only if consecutive operations of a product
is performed in different cells (d – c). The second term is for the
intra-cellular material handling cost and it is incurred when a
product’s consecutive operations are processed in two different
locations of a cell. If two consecutive operations are processed on
the same location, neither intra-cellular nor inter-cellular material
handling cost is incurred, because there is not any material flow
occurring between locations.

The third term of the objective function is the installation cost
of the machines. This cost is incurred if a new machine is pur-
chased or an existing machine is relocated. In a similar fashion,
the forth term denotes the uninstallation costs and it is incurred
only when a machine is uninstalled for relocation, since total unin-
stallation and removal of a machine from the layout is not allowed
in the model.

As discussed in the assumptions, for any machine present in the
layout, a constant overhead cost is incurred, in every period. The
fifth term of the objective is for this cost. On the other hand, the
sixth term is to consider the operating cost in all machines. The
seventh term is the purchasing cost of machines. The installation
costs of machines at the beginning of the first period are repre-
sented by the last term in the objective.

The terms (2)–(13) are the constraints of the mathematical
model. The term (2) ensures that an operation of a given product
type can only be processed in a given location if a machine, which
is capable of this operation, is assigned to the location. In addition,
this inequality guarantees that the total number of processed parts
cannot exceed the demand for the product. The equality (3)
denotes that the total number of product operations processed
anywhere in the factory floor must be equal to the total product
demand. The term (4) guarantees that at most one machine can
be assigned to a location and a location can be belong to only
one cell. Terms (5) and (6) impose the lower and upper limits for
the cell size. The term (7) guarantees that the total processing time
of the operations routed to a machine cannot exceed its capacity,
which is defined in terms of time.

Eqs. (8) and (9) are the flow conservation constraints. Briefly,
the term (8) ensures that the total number of incoming products
(p) from all other locations (k) to a location (l) for its next operation
(r þ 1) is equal to the number of products (p) which receive their
next operation (r þ 1) in the given location (l). In a similar fashion,
the term (9) shows that total the number of moving products (p)
from a given (k) to any location (l) for its next operation (r þ 1) is
equal to the number of products (p) which receive their current
operation (r) in the given location (k).

Eq. (10) is related to the total number of added machines, start-
ing from the beginning of the period 2. On the other hand, the term
(11) calculates the number of available machines at the beginning
of the planning horizon. The constraints (12) and (13) impose the
relationship between x and y decision variables. The former
constraint is related to installation and the latter constraint is
related to uninstallation.

3.2. Model properties

In this section, some important properties of the mathematical
model are discussed.

3.2.1. Sequence of operations
In real manufacturing systems, operation sequences are inevita-

ble. Products undergo processing operations in a predefined order.
Prior to the design of a manufacturing system, sequence of opera-
tions is readily available from the route sheet of the parts. In some
earlier CMS design studies (especially in studies that are focused
on cell formation) part machine incidence matrices were used as
the input of the problem. Thus, operation sequences were over-
looked. Operation sequence of parts is discussed among the major
practical issues and the studies that does not take operation
sequence into account are criticized (Papaioannou & Wilson,
2010; Onwubolu & Mutingi, 2001). Recently, many researchers
have emphasized the importance of operation sequences in CMS
design because, it does not only show processing requirements of
the parts, but also the flow patterns of the parts. (Sarker & Xu,
2000). It is also an important contributor for the accurate calcula-
tion of the material movements in the layout (Cheng, Goh, & Lee,
1996; Harhalakis, Nagi, & Proth, 1990).

3.2.2. Alternative process routes
Consideration of alternative process routes in a design approach

enlarges the solution space and increases the problem complexity.
Although it is a complicating factor for the problem to be solved,
consideration of alternative process routes helps system designer
to obtain better CMS designs. If alternative process routes are not
considered, a single process route is assumed by neglecting other
machines that are capable of processing required operations of
the products. However, if alternative process plans are taken into
account, throughput rate of the system can be increased and in-
process inventory can be reduced. In addition, consideration of
alternative process routes helps CMS designer to minimize the
total volume of exceptional elements. Logendran, Ramakrjshna,
and Sriskandarajah (1994), Adil, Rajamani, and Strong (1996),
Papaioannou and Wilson (2010), thus, better cell designs can be
obtained.

3.2.3. Inter-cell and intra-cell material handling
In conventional CMS design approaches, machine cells are

formed considering the processing requirements of the products
and product families. Ideally, formation of clear-cut machine cells
and product families is pursued but, this is generally impractical, if
not impossible (Urban et al., 2000). Formation of independent
machine cells requires substantial amount of machine investment
and eventually reduces utilization. Therefore, transfer of parts
between machine cells, namely inter-cell material handling is
mostly preferred over machine investment. However, inter-cell
movements decrease the efficiency of CM by complicating control
and increasing material handling requirements and flow time
(Aryanezhad et al., 2009). Inter-cell movements reduce the total
possible benefit that could be attained through implementation
of CMS philosophy. Inter-cell material transfers are usually done
in larger lots, thus interferes the unity among the operations of a
cell. If these movements increase too much and if the CMS is not
rearranged in a counteracting manner, control over the overall
CMS system becomes quite harder and controlling of material flow
becomes a difficult task than even that of a functional layout.
Reduction of inter-cell movements and related costs have been
the primary concern of the CMS design literature.
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Along with the inter-cell flow of the materials, consideration of
intra-cell material flow has a significant effect on the successful
CMS design. If layout of machines within a cell is not properly han-
dled, material flow may become complicated. However, if a good
sequence of machines within cells is determined, both the intra-
cellular movements are minimized and the general flow patterns
within cells emerge. In this study, minimization of both inter-cell
and intra-cell MHCs throughmaking of inter-cell and intra-cell lay-
out decisions. Both inter-cell and intra-cell MHCs are calculated
based on the distance between the locations, as opposed to some
studies that does not regard that issue. Thus, relative positions of
the machines with respect to each others are properly determined.

3.2.4. Layout reconfiguration
In this study, product demands are assumed to be exactly known

prior to the design stage (deterministic demand). Product demands
are different in subsequent periods (dynamic demand). As a result
of this, CMS can be reconfigured by considering the costs of
machine relocation. In our study, we assumed that rearrangement
of cells without machine relocation does not impose any cost.

3.2.5. Fractal layout and fractal cells
Suggested by Venkatadri, Rardin, and Montreuil (1997) and dis-

cussed by Montreuil (1999), fractal layout converts a functional
layout into physically separated cell as in conventional CMSs.
However, fractal cells are not created based on product families.
It is based on ‘‘factory within factory” concept and involves dupli-
cation of processes in the layout. As a part of ‘‘factory within fac-
tory” concept, a fractal cell is capable of manufacturing most of
the products and the total number of workstations for most of
the processes are equally distributed across several fractal cells.
In general, fractal cells have the ability to produce wider variety
of parts compared to GT cells. Therefore, in this strategy, formation
of identical cells is a common approach as opposed to conventional
CMS. However, if a fractal cell is specialized on processing a group
of products without sharing the total demand with other cells, it
may become a conventional GT cell.

In this study, we inspire from the fractal layout concept and the
fractal cells as in previous studies of Kia et al. (2012) and Khaksar-
Haghani, Kia, Mahdavi, and Kazemi (2013). Our approach is so flex-
ible that it is possible that all processing on a product can take
place at one and only one cell as in a conventional CMS or some
portion of the total demand of a product can be processed in one
cell and the rest can take place in another cell. Namely, lots can
be split among cells. In addition to that, parts are allowed to cross
cell boundaries with resulting inter-cell movements. In our model,
we allow model itself to determine a layout strategy in order to
benefit from the advantages of both fractal cells and conventional
CMS. If lots are split among different cells, it means that cells
resemble fractal cells. However, if products types are distributed
among different cells considering their processing requirements
without splitting product lots, manufacturing environment resem-
bles a conventional CMS.

3.2.6. Lot splitting
Lot splitting is dividing of large orders into smaller batches. It

provides simultaneous processing of products in more than work
center. In a conventional CMS under ideal conditions, a type of a
part is produced in a single cell without transferring of parts
between cells and splitting of demand among different cells.
Therefore, splitting of lots among cells or different machines are
not common in CMS design literature. There are very few studies
that consider this aspect of the manufacturing (Ahkioon, Bulgak,
& Bektas, 2009; Defersha & Chen, 2006; Khaksar-Haghani et al.,
2013; Kia et al., 2012; Logendran & Ramakrishna, 1995; Saxena &
Jain, 2011; Saxena & Jain, 2012) in CMS design. In this study, we
assume that the demand on a product can be split among different
cells, as in the case of fractal cells. Consideration of lot-splitting in
design stage improves machine utilization, reduces inter-cell
movements, operation costs and required machine investments
(Defersha & Chen, 2006).

3.2.7. Machine capacities and machine duplication
One of the other realistic assumptions of our model is the

machine capacities. In a design approach where process durations
of operations and alternative process routings are taken into
account, machine capacities should also be considered. Each
machine has a limited capacity, expressed in time units (e.g. h)
during each time period. In this model, since we assume that
machine capacities are limited, purchasing and locating multiple
copies of machines in a single cell is allowed.

3.2.8. Number of cells and cell size
In this study, we allow the system designer to specify the num-

ber of cells and impose constraints on the maximum and the min-
imum number of machines that can be assigned to a cell. As stated
by Heragu (1994) and Black (1983) presetting the number of cells
(or maximum number of cells) might be desired in some cases. In
addition, if the number of cells is not wanted to be determined in
advance, by assigning a relatively higher value to number of cells
and by not imposing a minimum cell size, the number of cells
can be determined by solving the mathematical model. This, of
course, requires the maximum number of machines in a cell to
be defined in advance. Otherwise, the model will converge to a
result with only a single cell with too many machines. This will
reduce inter-cell material handling costs but will deteriorate the
control and the operational efficiency of the cells. As it is easier
to coordinate material flows in a smaller cell, not imposing a lower
bound to cell size is a reasonable preference (Gupta & Tompkins,
1982; Nsakanda et al., 2006).

3.3. Linearization of the model

The terms (12) and (13) include multiplication of decision vari-
ables. This violates linearity of the model. For the linearization of
the model, the terms (12) and (13) are replaced by the following
terms.

0:5þ yki;tþ1 þ
XN
c¼1

xckit �
XN
c¼1

xcki;tþ1 P 0 8 k; i; t ¼ 1; . . . ; T � 1

ð14Þ

1:5� yki;tþ1 þ
XN
c¼1

xckit �
XN
c¼1

xcki;tþ1 � 1 6 0 8 k; i; t ¼ 1; . . . ;T � 1

ð15Þ

0:5þ y0ki;tþ1 þ
XN
c¼1

xcki;tþ1 �
XN
c¼1

xcki;t P 0 8 k; i; t ¼ 1; . . . ; T � 1

ð16Þ

1:5� y0ki;tþ1 þ
XN
c¼1

xcki;tþ1 �
XN
c¼1

xcki;t � 1 6 0 8 k; i; t ¼ 1; . . . ;T � 1

ð17Þ
3.4. Computational complexity

In order to reflect real manufacturing environment to a
broader extent, the proposed model integrates many design
features of cellular manufacturing design. Along with its dynamic
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reconfiguration properties, it comprises cell formation, inter- and
intra-cell layout features. Furthermore, in the model, cell size is
flexible and splitting of lots is allowed. Part routing with alterna-
tive routings, duplicated machines and operation sequence are also
considered. All these attributes contribute to the complexity of the
model.

Cell formation itself is a combinatorial complex problem. When
the cell reconfiguration under dynamic conditions is considered, its
complexity increases (Chen, 1998). Generally, Quadratic Assign-
ment Problem (QAP) formulation is used to formulate inter-cell
layout and intra-cell layout problems in CMS design. The QAP
formulation is extensively used in facility layout literature and it
has been proven to be an NP-Hard optimization problem (Sahni
& Gonzalez, 1976). Determination of process routing among
alternative process routings is also a problem of complexity class
NP-Hard (Logendran et al., 1994). Therefore, the mathematical
model of the problem is of a NP-Hard complexity class, since it
integrates all of the problems given above and even with some
other design features.
4. Solution approaches

Due to the complexity of the problem, two hybrid solution
methods based on Simulated Annealing and Genetic Algorithm is
developed. Both of the approaches utilize Linear Programming in
a similar fashion. The new solution approaches are discussed in
detail in the following sections.
4.1. The LP embedded Simulated Annealing approach

We handle three aspects of dynamic cellular manufacturing
system design: the cell formation problem, inter-cell layout prob-
lem and intra-cell layout problem. As discussed in Section 3.4, the
proposed model is an NP Hard problem and is not expected to be
solved to optimality for large problems with the use of off-the-
shelf optimization software. Hence, solving this problem by using
exact methods is inefficient and time consuming. Therefore, here
we propose a Linear Programming and Simulated Annealing based
hybrid solution approach.

As described by Rutenbar (1989), components of SA algorithm
are configurations, move set, cost function and cooling schedule.
Configurations are the representations of possible solutions over
which a good answer is searched. Move set is a set of allowable
moves which are performed to move from a legal configuration
to another. Cost function is used to measure the fitness of visited
configurations by using a move set. Cooling schedule determines
the starting temperature, when to reduce the temperature, how
much the temperature should be lowered and the termination
condition of the SA.

SA andmany of other heuristic techniques are usually applied to
combinatorial optimization problems where all the decision vari-
ables are discrete. The proposed model involves both integer vari-
ables and binary variables. Although, binary variables can easily
be handled by SA, integer variables are hard to be managed in SA.

Compared to integer programming or binary programming, LP
is an efficient method in terms of solution time. However, LP is
not suitable for solving problems with integer variables. The divis-
ibility assumption of LP ensures that every decision variable can
take fractional values (continuous variable). Although the pro-
posed mathematical model does not involve any continuous vari-
ables, in some cases, rounding optimal solution’s variables to an
integer value may yield reasonable solutions. Therefore, relaxing
problem’s integer variables to continuous variables (without
relaxing binary variables), solving this part to optimality by LP
and rounding off optimal solution to integers seem to be practical
and efficient both in terms of solution quality and solution time
(Winston & Goldberg, 2003).

Our problem consists of six types of decision variables
(xckit; ykit; y0kit; Wprcdklijt; wprckit ; Qit), four of which are directly
related to the layout of machines and determination of cells. These
are xckit; ykit; y0kit; Qit . Once the layout of machines and cells forma-
tions is determined for every period, the values of these variables
are known. Then, the only problem that remains to be solved is
the flow of materials between locations. SA and the LP share the
work of optimization of these variables considering their
capabilities.

In the hybrid approach (Fig. 1), LP is embedded into Simulated
Annealing. Using SAeLP’s solution representation ( DL½ �), layout of
machines, formation of cells and layout of cells are determined.
Then, LP is used to determine the optimal material flow between
locations considering the capacities, capabilities and processing
cost of machines in these locations and the cost of material han-
dling between locations. LP determines the optimal material flow
and part routing by solving the sub-problem, which is given in
Eqs. (23)–(30). Afterwards, SAeLP moves to a neighbor solution (a
new machine layout and cell formation), then by employing LP,
new material flow and part routing are determined for the neigh-
bor solution. These steps are repeated until SAeLP reach the mini-
mum temperature.

Referring to the main mathematical model (1)–(17), if the val-
ues of the binary cell-location-machine assignment variables
(xckit) and the other dependent variables (ykit; y0kit; Qit) are deter-
mined, some of the indices and some of the terms in the main
model are no longer needed. For example, if machine-cell-
location assignments are known for every period, machine pur-
chasing costs, machine installation and uninstallation costs and
machine constant costs can be calculated. In addition, capabilities
of machines can be expressed in terms of the capabilities of the
locations as the machines assigned to each location are known.
Since the locations in the same cell are known, the type of material
handling (inter- or intra-cell) between the locations can be deter-
mined. The sub-problem is solved by using LP for every accepted
solution in SA during the search in discrete solution space. The
sub-problem is described in Section 4.2.
4.1.1. Solution representation scheme and neighbor generation
In the meta-heuristic part of this approach, machine-location

assignments and cell formations are determined by SA. SA uses a
three dimensional matrix, DL½ �3� U�Nð Þ�T for the representation of
each machine-cell-location assignments in different periods. For
the sake of simplicity in graphical representation, let us assume
that DL½ � is split into T sub-matrices, each of represents a layout

solution in a period ( DL½ �1; . . . ; DL½ �T ). An example solution repre-
sentation and the corresponding layout of machines in subsequent
periods are given in Fig. 2. In the example, there are three types of
machines, eight locations, three cells and three periods. The maxi-
mum cell size is three and the minimum cell size is two for this
example representation. Each two dimensional sub-matrix ( DL½ �n)
represents machine-cell-location assignment for a period. Rows
of this matrix correspond to cell numbers, location numbers and
machine type numbers, from the top to bottom row, respectively.
In order to ensure minimum and maximum number of machines
in each cell, the matrix is divided into two parts.

Elements of the part on the left side are only allowed to take
non-zero values. This rule is checked whenever an initial solution
or a neighbor solution is generated. In the top row of the left sec-
tion, each cell number is repeated only L (minimum cell size)
times. Thus, the minimum cell size is guaranteed for every cell,
while ensuring that all elements in these columns are non-zero.
However, the elements of the right section can be zero, except
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the elements of the top row. Hence, the cell sizes cannot exceed the
maximum number of allowed machines (U) in a cell. Each column
without zero elements represents a machine-cell-location assign-

ment. For example, the fifth column of the DL½ �1 sub-matrix refers
to the assignment of a machine type one to location seven, which is
assigned to cell number three. As it might be inferred from the fig-
ure, all elements of the first section of this matrix correspond to
different assignments. For instance, the seventh column of the

DL½ �1 sub-matrix does not correspond to any solution, due to the
zero value in its second row. Similarly, the eighth column of the
same matrix does not refer to an assignment, because of the zero
value in its third row.

The SAeLP approach moves from a solution to its neighbor by
employing a number of different neighborhood mechanisms. Each
neighborhood mechanism is employed based on a predefined
probability. These mechanisms are briefly described below:

Swap locations: Select a period t, randomly. Randomly select
two positions of middle row of [DL]t matrix. If elements in these
positions are non-zero, then swap them directly. If at least one
of them is zero, then swap them only if they belong to the
second section of the matrix.
Swap machines: Select a period t, randomly. Randomly select
two positions of bottom row of [DL]t matrix. If elements in these
positions are non-zero, then swap them directly. If at least one
of them is zero, then swap them only if they belong to second
section of the matrix.
Swap cells: Select a period t, randomly. Randomly select two col-
umns of [DL]t matrix. If all elements in these columns are non-
zero, then swap columns, except the top row. If some elements
of these columns are zero, swap them if both of them belong to
the second section of the matrix.
Add machine: Select a random period t. Select a random posi-
tion in the bottom row of the [DL]t matrix. Assign a random
machine type number to that position. Add that machine num-
ber to the representations of the following periods ([DL]t, . . . ,
[DL]T) too.
Remove machine: Select a random period t. Randomly select a
non-zero value in the bottom row of the [DL]t matrix. Assign
zero to that position. Remove that machine number from the
representations of previous periods ([DL]1, . . . , [DL]T) too.
Copy period: Select a random period t. Copy [DL]t matrix and
paste that on representations of either all previous ([DL]1, . . . ,
[DL]t) or following periods ([DL]t, . . . , [DL]T).



Fig. 2. Solution representation scheme in SAeLP.
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4.1.2. Simulated Annealing parameters
SA requires some parameters to be defined in advance. These

parameters include initial temperature, epoch length (Markov
Chain Length), cooling rate, and termination condition. In this study
these parameters are determined based on the problemparameters.

Initial temperature is a contributing factor to the quality of
solutions found by SA (Meller & Bozer, 1996). The initial tempera-
ture must be high enough to allow acceptance of worse solutions
with a high probability at the initial iterations. However, if the
determined temperature is very high, then the running time is
increased without providing any advantage on the best found solu-
tion. In this study, initial temperature is calculated so that the
probability of accepting non-improving solutions is 0.95. In order
to determine the initial temperature, the average of absolute dif-
ference between 500 random feasible solutions and their feasible
neighbors are used. Let Za and Z0

a be the OFVs of random feasible
initial solution and its feasible neighbor in ath iteration,
respectively (Eq. (18)). OFV is the average difference between
initial solutions and their neighbors. The initial temperature is then
calculated by using the Eq. (19).

X500
a¼1

Za � Z0
a

�� ��=500 ¼ OFV ð18Þ

Tmax ¼ �OFV
ln 0:95

ð19Þ

Before the temperature is reduced in accordance with the cool-
ing schedule, the SA steps are repeated until the search reaches to
equilibrium. Epoch length is the number of visited solutions in
each iteration. It is observed that as the problem complexity is
increased, the epoch length should be increased for better solu-
tions. Therefore, in this study epoch length (Markov Chain Length)
is calculated based on the following formulation.

EpochLength ¼ K � T ð20Þ
In our implementation of SA, the search stops when the final

temperature (Tmin) is reached. As a lower final temperature leads
to a finer search of the space, lower temperatures are desired.
However, very low temperatures increase running time without
improving solution quality. In this study, final temperature is
determined in such a way that the acceptance probability of a
neighbor solution is equal to 0.01 when the difference between
OFVs of incumbent solution and its non-improving neighbor is
equal to the 10% of the average OFV difference (OFV).

Tmin ¼ �OFV � 0:1
ln 0:01

ð21Þ

Maintaining a slower cooling is essential for a better search of prob-
lem space. A cooling schedule with a cooling factor (a) of 0.975 is
employed for all problems. Let Tn be the temperature at the nth iter-
ation and a be the cooling rate, then:

Tn ¼ Tmax � an�1 ð22Þ
4.2. The LP embedded genetic algorithm approach

In this section, we propose another solution approach (GAeLP),
which is based on GA. In GA, solution representations are referred
to as ‘‘chromosomes” and any given set of chromosomes are
referred to as ‘‘population”. The main idea behind the method is
sequentially generating populations by employing some mecha-
nisms derived from ‘‘natural selection” and ‘‘evolution” theories.
Mainly, these mechanisms are selection, cross-over and mutation.
Selection mechanism determines the chromosomes that will trans-
mit their genetic material to the following generations through
cross-over operator. Cross-over operator is the combination of
two chromosomes (parent) from the previous generation (or pop-
ulation) in order to produce new chromosomes (child or offspring).
In other words, selection operator determines the parent chromo-
somes to be crossed over and the cross-over operator produces
their offspring. If only these two operators are applied throughout
the generation of all populations, then, the chromosomes eventu-
ally become exact copies of each other. Therefore, in order to avoid
this convergence, mutation operator is used. Mutation operator
makes minor changes on the chromosomes and protects popula-
tion from being stuck in local optima. The method will be
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discussed in detail after discussing solution representation and GA
operators.

4.2.1. Solution representation
Considering the new solution generation mechanisms in GA,

such as cross-over, directly using of solution representation of
SaeLP ( DL½ �) is inefficient. In our initial studies, we have seen that
direct using of SAeLP’s solution representation scheme yield many
infeasible solutions and require too many repair heuristics to be
performed. In GAeLP, for the representation of a solution, three
additional representations are used along with the DL½ � matrix.
These three components are initially used by the GAeLP operators
(cross-over and mutation) for the creation of new chromosomes.
Then, in order to calculate objective function values (fitness val-
ues), these representations are converted into DL½ � representation
matrix. First one of these is a two dimensional matrix, FP½ �3� U�Nð Þ.
In this representation is simply the layout of the first period and

it s the exact copy of DL½ �1 sub-matrix. As in the case of DL½ � matrix,
it consists of two sections and none of the elements in the first sec-
tion is allowed to be zero. Thus, minimum cell size constraint is
satisfied automatically. In the second section, zero elements are
allowed and if there is a zero element, other elements of that
column become ineffective.

Second element of the solution representation is a three dimen-
sional matrix, Add½ �2� U�Lð Þ�Nð Þ� T�1ð ÞÞ. This matrix shows the types of
machines to be added to the layout in each period, following the
first period. Therefore, the size of the third dimension is T � 1.
For the sake of simplicity, let us assume that Add½ � matrix consists

of T � 1 sub-matrices ( Add½ �12� U�Lð Þ�Nð Þ; . . . ; Add½ �T�1
2� U�Lð Þ�Nð Þ). Each col-

umn of the Add½ �n sub-matrix corresponds to a column in second
section of DL½ �n sub-matrix. In the first row Add½ �n sub-matrix, the
machine type numbers to be added are stored. Second row of the
Add½ �n sub-matrix stores binary key values. If the key value is 1
and if the corresponding column in DL½ �n has at least one zero ele-
ment in second or third row, then the machine is located to that
position. Otherwise, adding of the machine to the layout represen-
tation is not performed. As it might be inferred, the number of col-
umns in this representation is U � Lð Þ � N because, no empty
position is allowed in the first section of the DL½ �n sub-matrix.
Therefore, the number of columns in Add½ �n sub-matrix is equal
to the number of columns in the DL½ �n matrix’s second section.

The third element of the GAeLP representation scheme is the
three dimensional Rel½ �3�R� T�1ð Þ matrix. The size of its second
dimension (R) is arbitrarily determined. In our experiments we
have seen that setting the R value to half of the number of available
locations (K) is sufficient. This matrix determines the relocations
on the solution representation in each period. For the sake of sim-
plicity, let us assume that Rel½ � matrix consists of T � 1 sub-

matrices ( Rel½ �13�R; . . . ; Rel½ �T�1
3�R). The first and the second rows of

the Rel½ �n sub-matrix stores the column numbers of the elements

to be swapped in the DL½ �n while creating DL½ �nþ1 matrix. The ele-
ments of the third column are ternary key values. If the key value
is 0, the positions are not swapped. If the value is 1, only the cor-
responding third row elements of DL½ �n sub-matrix (machine num-
bers) are swapped. Namely, only machines are relocated. If the key
value is 2, both the corresponding second and third row elements
of DL½ �n sub-matrix (location and machine numbers) are swapped.
In all of the swap operations, in the first section of the DL½ �n sub-
matrix, only non-zero elements are allowed. Any swap operation
which would place zero element in the first section is cancelled.

Before the GAeLP can proceed, these three elements of the solu-
tion representation should be used for the construction of DL½ �
solution representation. This construction procedure described in
Fig. 3. As [FP] matrix is as same as DL½ � matrix’s sub-matrix DL½ �1,
it is directly transferred to the representation. By using Add½ �1
and Rel½ �1, machines are added and relocated. Thus, the layout of

second period ( DL½ �2) is obtained. Implementation order of Add½ �n
and Rel½ �n matrices affect the ultimate DL½ � matrix. In this study,

during the construction of DL½ �nþ1 matrix, firstly Add½ �n and then
Rel½ �n is used. As long as it is consistently applied throughout the
algorithm, reverse order of implementation can also be preferred.
As in the case of [DL] matrix, some elements without any effect
on ultimate layout may appear in Add½ � and Rel½ � solution represen-
tations. These elements are intentionally stored in solution repre-
sentation. After implementation of some GA operators, these
elements may become effective and help better searching of the
solution space by producing new unvisited solutions.

4.2.2. Crossover, mutation and selection mechanisms
In GAeLP approach, neighbor solutions are generated by using

solution representations, FP½ �; Add½ � and Rel½ �. For each component
of the representation scheme, different cross-over and mutation
operators are employed. These are summarized below.

Cross-Over of [FP]: For FP½ � component of solution representa-
tion, one of two types of cross-over operator is applied. In the
first type of the cross-over, the third row of the parent 1’s FP½ �
and the second row of parent 2’s FP½ � are combined. Thus, child
1’s [FP] matrix is obtained. Then, the third row of the parent 2’
FP½ � and the second row of the parent 1’s FP½ � are combined.
Thus, child 2’s [FP] matrix is obtained. In the second type of
cross-over, two swap column points are selected and the infor-
mation between these two cross-over points are swapped, thus
child solutions are obtained. When conducting second type of
cross-over, zero elements in the first section are removed. In
addition, as the second row of FP½ � holds location numbers, it
is ensured that each non-zero location number is repeated only
once.
Cross-over of Add½ �: Two types of cross-over is applied for Add½ �
matrix. In the first type, child solutions are generated by
cross-matching of parents’ first and second rows of Add½ � matri-
ces. In the second type of cross-over, two swap column points
are determined and the information between these two points
are swapped among parents. Thus, children are obtained. Since
Add½ � matrix is a three-dimensional matrix, it should be men-
tioned that the same swap points are used for each of the
T � 1 periods.
Cross-over of Rel½ �: As opposed to the other components of solu-
tion representation of GAeLP, single type of cross-over is
applied for Rel½ � component of the solution representation. In
this cross-over operator, different pairs of swap column points
are determined for each of the T � 1 periods. The information
between these points are swapped among Rel½ � matrices of the
parents.
Mutation of FP½ �: Mutation of the solutions are performed right
after creation of [FP] representation components of children.
Two types of mutation operators are used for [FP]. In the first
type of the mutation, after randomly selecting a pair of columns
in a child solution’s [FP], either the second row, or the third row
or both the second and the third row elements in these columns
are swapped. While swapping the elements, entering of zero
values to the first section of [FP] matrix is avoided.
Mutation of Add½ �: Two types of mutation operators are used. In
the first operator, one of the T � 1 sub-matrices of Add½ � is
chosen and one of the machine numbers in the first row of
the sub-matrix is changed. In the second operator, one of the
T � 1 sub-matrices of Add½ � is chosen and a key value is selected



Fig. 3. Illustration of GAeLP’s solution representation scheme and conversion procedure.

20 H. Bayram, R. S�ahin / Computers & Industrial Engineering 91 (2016) 10–29
randomly. Then, this value is switched either from 1 to 0 or
from 0 to 1.
Mutation of Rel½ �: Two types of mutation operators are used. In
the first one, values of only the first and the second row ele-
ments are changed. These elements are randomly selected. In
the second type of the mutation operator, the elements of the
key value row are changed with randomly generated key
values.

In the above given paragraphs, mutation and cross-over opera-
tors of the solution methodology were summarized. Another oper-
ator of GA is the selection operator. It determines parent
chromosomes of the cross-over. The chromosomes selected by
selection operator transmit their genes to the following popula-
tions. In this study, we applied tournament selection operator,
which is easier to implement. In order to be able to select parents
by employing tournament selection, fitness values of the all parent
solutions must be already calculated. In tournament selection, a
smaller group of candidate solutions are randomly selected among
the whole population. The best one among the sub-group is
selected as the first parent. This is repeated again and the second
parent of the two offspring solutions is determined. Then, cross-
over and mutation operators are performed and children chromo-
somes are determined. These steps are repeated until all children
of the new population are produced.
Fig. 4. Summary of the algorithmic steps of GAeLP.
4.2.3. Description of the GAeLP
Our GA based solution methodology (GAeLP) is described in

Fig. 4. The LP is integrated to GAeLP as it was done with the SAeLP.
GAeLP method begins with the randomly producing of an initial
population. Firstly, by using all three matrix components of the
GAeLP solution representation ð FP½ �; Add½ � and Rel½ �Þ, DL½ � matrices
are created. Actually, throughout the algorithm, three components
of the solution representation can be directly used but, reading the
solution from these three components is not easy and calculation
of objective function values from this representations is more com-
plex. Therefore, we convert this representation into [DL] matrices.
FP½ �; Add½ �; Rel½ � and DL½ � representations are stored for all of the
chromosomes in the population until they are replaced by their
offsprings.
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Since DL½ � matrices store the layout related information, the
objective function’s certain parts can be calculated. Only by using
DL½ � representation, purchasing, constant, installation and uninstal-
lation costs of the machines can be determined (OFV1). Right after
the completion of the conversion, OFV1 values of the solutions in
the population are calculated. In order to determine material rout-
ing and material flow related costs (OFV2: processing cost, inter-
cell and intra-cell material handling costs) LP is used. LP requires
some parameters to be modified. This steps will be discussed in
detail, in the following sections. After the modification of these
parameters for every solution representation, a series of LP are
run. For example, if there are 100 chromosomes in a population,
100 different LP problems are run in order to obtain OFV2s of the
layout solutions. Then, the total cost of layouts (OFV1 and OFV2)
are determined. Total cost is also used as the fitness value during
the selection operator.

Tournament selection operator of GA selects the solutions to be
used for the reproduction of children, by comparing their fitness
values (OFV1 + OFV2). For the cross-over and mutation of the solu-
tions three-component solution representations ( FP½ �; Add½ �; Rel½ �)
of the solutions are used. After the production of new generation,
solution representations are converted to DL½ �, and OFV1s of the
solutions are calculated, LP parameters are generated for all of
the chromosomes in the population. Then, an LP problem for each
solution is solved and OFV2s are calculated. These steps are
repeated until the GAeLP’s termination condition is met.
4.3. The mathematical model of the sub-problem

Determination of machine-cell-location assignments either by
SA or GA dramatically simplifies the mathematical model to be
solved by LP by reducing the number of variables, indices and
constraints and eliminating all integer and binary variables. This
sub-problem is solved every time SAeLP or GAeLP visits a
layout solution. Therefore, during the search stage of this
approaches, LP problem is solved tens thousands times with
different parameters.

Indexing sets:

t: index for periods,
p: index for product types,
r: index for operation types,
k; l: index for locations.

Parameters:

T: Number of planning periods.
P: Number of product types.
Rp: Number of operations for product type p.
K: Number of locations.
Ep: Inter-cellular material handling cost per product type p, per
unit distance.
Ap: Intra-cellular material handling cost per product type p, per
unit distance.
Lklt : 1, if locations k and l are in the same cell in period t, 0
otherwise.
D�

pt: Increased demand for product type p, in period t.
kkl: Distance between locations k and l.
p x

prkt: Unit processing time of rth operation of product type p, in

location k in period t.
l x

kt: Unit variable cost of machine in location k, in period t.
C x
kt: Capacity of machine in location k in period t.

a x
prkt : 1, if rth operation of product type p in location k, in period

t, 0 otherwise.
Decision variables:

Gprklt: Number of products of type p, processed by operation r, in
location k and moved to location l to be processed by operation
r + 1, in period t.
gprkt: Number of products of type p, processed by operation r, in
location k in period t.

Objective function:

min z ¼
XT
t¼1

XP
p¼1

XRp�1

r¼1

XK
k¼1

XK
l¼1

Gprklt � kkl � Ep � 1� Lkltð Þ ð23Þ

þ
XT
t¼1

XP
p¼1

XRp�1

r¼1

XK
k¼1

XK
l¼1

Gprklt � kkl � Ap � Lklt ð24Þ

þ
XT
t¼1

XP
p¼1

XRp
r¼1

XK
k¼1

XK
l¼1

gprkt � p x
prkt � l x

kt ð25Þ

Subject to:

gprkt 6 a x
prkt � D�

pt 8 p; r; k; t ð26Þ
XK
k¼1

gprkt ¼ D�
pt 8 p; r; t ð27Þ

XP
p¼1

XRp
r¼1

gprkt � p x
prkt 6 C x

kt 8 k; t ð28Þ

XK
k¼1

Gprklt ¼ gp;rþ1;lt 8 p; l; t; r ¼ 1; . . . ;Rp � 1 ð29Þ

XK
l¼1

Gprklt ¼ gprkt 8 p; k; t; r ¼ 1; . . . ;Rp � 1 ð30Þ

Gprklt ; gprkt P 0 ðContinuousÞ:
As discussed above, once the machines are located and are

assigned to cells, the third, fourth, fifth, seventh and eighth terms
in the objective function (1) of the main mathematical model can
be determined. Only the inter- and intra-cell MHC and variable
costs of machine processing are needed to be determined by LP
because these costs are dependent on the decision variables of pro-
duct routing, which is determined by LP.

The term (23) imposes the inter-cell MHC to the model if the
location k and l belong to different cells. Nevertheless, if these
two locations are assigned to the same cell, intra-cell MHC is
imposed by the term (24). The last term of the objective function,
namely the term (25), calculates the processing costs of the prod-
ucts in all periods.

(26) satisfies the condition that the quantity of certain product
operation in a period cannot exceed the demand for that product in
that period and can only be processed in locations which are cap-
able of processing that operation. The equality (27) ensures that all
products of a given type are processed for their every operation.
The inequality (28) guarantees that the capacities of locations,
which are equal to the capacities of the machine on those locations,
are not exceeded. The inequalities (29) and (30) are flow conserva-
tion constraints. It must be kept in mind that the decision variables
of the sub-problem are continuous.

After LP sub-problem is solved, all terms of the objective func-
tion of the main model are determined. In accordance with these
results and the dynamics of SA, SA moves to a new layout solution.
Then, the new LP problem with new parameters is solved. These
steps are repeated until SA termination condition is met. Finally,
in the best solution found in SA, the material flow and part opera-
tion variables are rounded to the closest integer considering the
machine capabilities, machine capacities, etc.
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4.4. LP interface

After generating a layout solution by SAeLP or a population of
solutions by GAeLP, an LP sub-problemmust be solved for each lay-
out solution, in order to determine the optimal material flow
between locations and the process routings. This step is totally
same for any generated layout solution, which can either be gener-
ated by SAeLP or GAeLP. As itmight be noticed, in the sub-problem’s
mathematical model, the indices that represent machine types (i; j)
and cells (c,d) are removed, since the machines in the locations are
already determined by solution representations of SAeLP and
GAeLP. Some parameters of the LP are dependent on machine-
location-cell assignments therefore, they are needed to be updated
in every call of the LP according to the dynamic layout plan gener-
ated by the solution approach. Updating the parameters is per-
formed by the interface between LP and the meta-heuristics (SA
or GA). The updated parameters are p x

prkt; l x
kt; a

x
prkt ; C x

kt and Lklt .

The parameters p x
prkt ; l x

kt ; a
x
prkt and C x

kt are related to the origi-
nal mathematical model’s parameters, ppri; li; apri and Ci, respec-
tively. The parameters superscripted with the x symbol are also
dependent to machine-location-cell assignments, which are
denoted by xckit in the main model. Therefore, these parameters
are needed to be modified considering the machine types assigned
to the locations in every call of LP. Updating of these variables is
quite straightforward. For example, if a machine of type i is
assigned to location k in period t, then p x

prkt ¼ ppri 8p; r. Other

parameters are updated similarly. Namely, capacities (C x
kt), capabil-

ities (a x
prkt), processing times (p x

prkt) and variable costs (l x
kt) of loca-

tions are updated based on the machine type assigned to given
location in a given period. Assuming that x�ckit represents a feasible
dynamic layout solution’s machine-location-cell assignments,
mathematical description of the parameter update is given in
(31)–(34). These equations are given in order to illustrate the
mathematical and the logical basis of this interfacing procedure.
In the executable programs of SAeLP and GAeLP, this procedure
is carried out by directly using of DL½ � matrices and by implement-
ing some logical expressions. Actually, x�ckit variables are neither
created nor used by the interface.

p x
prkt ¼

XN
c¼1

XM
i¼1

x�ckit � ppri
� � 8 p; r; k; t ð31Þ

a x
prkt ¼

XN
c¼1

XM
i¼1

x�ckit � apri
� � 8 p; r; k; t ð32Þ

l x
kt ¼

XN
c¼1

XM
i¼1

x�ckit � li

� � 8 k; t ð33Þ

C x
kt ¼

XN
c¼1

XM
i¼1

x�ckit � Ci
� � 8 k; t ð34Þ

In addition to those updated parameters, a new parameter Lklt is
produced. This parameter is also generated by the interface
between meta-heuristic and LP according to the layout solution vis-
ited by SAeLP or GAeLP during the search. This parameter denotes
whether two different locations are assigned to the same cell in a
given period. This parameter is important for the correct calculation
of the inter-cell and intra-cell MHCs. This parameter is also gener-
ated by directly using of [DL] solution representation, without cre-
ating x�ckit variables. The mathematical basis of the generation of this
parameter is as follows:

Lklt ¼
XN
c¼1

XM
i¼1

x�ckit �
XM
j¼1

x�cljt

 !
8 k; l; t ð35Þ
4.5. Integer solution

Although the original problem only allows splitting of lots into
integer values, the variable values returned by the solving of LP
sub-problems are mostly non-integer. After the termination of
SAeLP or GAeLP’s search stage, the flow and routing variables of
the best layout solution should be rounded off to integer values.
Rounding off of these solutions to closest integer may cause viola-
tion of capacity constraints of machines. In fact, machine capacity
constraints are vulnerable to rounding to the closest and larger
integer, because any such rounding may exceed machine capacity.
In addition, flow conservation constraints are also needed to be
taken into account during the rounding off of non-integer values.
Therefore, directly rounding off of the continuous variables
requires consideration of many constraints. In the proposed
approaches, in order to round off these variables, the LP sub-
problem is solved for the last time, with the imposition of integral-
ity constraints for Gprklt and gprkt variables. Thus, the LP turns into a
MIP problem. This step is carried out only once, for the best layout
solution, which is found at the end of search stages of GAeLP and
SAeLP. Although MIP problems are harder to solve compared to
their LP counterparts, this step has a very limited impact on the
run time because, it is only executed only once and does not
require the proven optimal integer solution to be found. In the case
of very complex sub-problems with too many products, operations,
locations and periods, a time limit can be imposed to the rounding
procedure. So, a relatively good feasible integer solution can be
reported. Even with our large test samples, we have rarely
encountered such a situation.
5. Numerical example

In this section a numerical example is provided. In this example,
rather than discussing all steps of SAeLP and GAeLP, some impor-
tant steps are focused on.

5.1. Problem parameters

The sample problem used in this section for the illustration pur-
pose is sample number 2. The parameters of the example are given
in Tables 1 and 2.

The illustrative example consists of two part types (P = 2), three
operations for each part type (Rp = 3), three machine types (M = 3)
and 5 machine locations (K = 5). Two cells must be formed (N = 2).
Maximum cell capacity is three machines (U = 3) and each cell
must have at least one machine (L = 1). Planning horizon is two
periods (T = 2). Unit distance inter-cell and intra-cell material han-
dling costs for a unit of product of any type are 50$/m and 5$/m,
respectively (Ep = 50, Ap = 5). The remaining parameters are given
in Tables 1 and 2.

5.2. Dynamic layout solution and LP solution

LP is used repetitively for every layout solution generated by
SAeLP and GAeLP. LP parameters are generated and the corre-
sponding LP is solved to determine the optimal material flow and
product routings. Let’s assume that the layout solution shown in
Fig. 5 is obtained in an intermediate iteration of SAeLP or in a gen-
eration of GAeLP. Using this layout solution, machine purchasing
costs ($80,000), installation costs ($2775), uninstallation costs
($775) and overhead costs ($14,400) can be calculated. The total
of these costs (OFV1⁄) is $97,950 for the solution given in Fig. 5.

After obtaining a layout solution, LP parameters are needed to
be generated considering the layout solution and the main model
parameters. Then, the LP parameters are generated employing



Table 1
Machine capability, capacity and cost parameters of sample 2.

Machine information ppri ðhÞ and apri
a

p = 1 p = 2

ci ($) bi ð$Þ di ð$Þ hi ð$Þ li ð$=hÞ Ci ðhÞ r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

i = 1 18000 1800 450 450 9 500 0.54 0.79 0.80
i = 2 15000 1500 375 375 7 500 0.53 0.45 0.76
i = 3 16000 1600 400 400 6 500 0.77 0.33 0.91 0.80

Dpt p = 1 p = 2

t = 1 400 300
t = 2 500 200

a apri ¼ 1 if ppri > 0;0 otherwise.

Table 2
Distance matrix of locations.

kkl (m) l = 1 l = 2 l = 3 l = 4 l = 5

k = 1 0 1 1 2 2
k = 2 1 0 2 1 3
k = 3 1 2 0 1 1
k = 4 2 1 1 0 2
k = 5 2 3 1 2 0
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the terms (31)–(35). Values of x�ckit , which correspond to the layout
solution shown in Fig. 5, are as follows:

x�1;1;1;1 ¼ 1; x�2;2;2;1 ¼ 1; x�1;3;3;1 ¼ 1; x�2;4;2;1 ¼ 1; x�1;1;1;2 ¼ 1;

x�1;2;3;2 ¼ 1; x�2;3;2;2 ¼ 1; x�1;4;2;2 ¼ 1; x�2;5;3;2 ¼ 1

for all other; x�ckit ¼ 0:

The LP parameters calculated by the LP interface are given
below. Multi-dimensional matrices are represented as described
by Solo (2010).

lx
kt ¼

9 9

7 6

6 7

7 7

0 6

2
6666666664

3
7777777775
; Cx

kt ¼

500 500

500 500

500 500

500 500

0 500

2
6666666664

3
7777777775
; ax

prkt ¼

1 1 0

0 1 0

" #
1 1 0

0 1 0

" #

0 1 0

1 0 1

" #
1 0 1

0 1 1

" #

1 0 1

0 1 1

" #
0 1 0

1 0 1

" #

0 1 0

1 0 1

" #
0 1 0

1 0 1

" #

0 0 0

0 0 0

" #
1 0 1

0 1 1

" #

2
66666666666666666666666664

3
77777777777777777777777775

;

p x
prkt ¼

0:54 0:79 N=A

N=A 0:80 N=A

� �
0:54 0:79 N=A

N=A 0:80 N=A

� �
N=A 0:53 N=A

0:45 N=A 0:76

� �
0:77 N=A 0:33

N=A 0:91 0:80

� �
0:77 N=A 0:33

N=A 0:91 0:80

� �
N=A 0:53 N=A

0:45 N=A 0:76

� �
N=A 0:53 N=A

0:45 N=A 0:76

� �
N=A 0:53 N=A

0:45 N=A 0:76

� �
N=A N=A N=A

N=A N=A N=A

� �
0:77 N=A 0:33

N=A 0:91 0:80

� �

2
66666666666666666664

3
77777777777777777775

;

Lklt ¼

1 0 1 0 0

0 1 0 1 0

1 0 1 0 0

0 1 0 1 0

0 0 0 0 1

2
6666664

3
7777775

1 1 0 1 0

1 1 0 0 0

0 0 1 0 1

1 0 0 1 0

0 0 1 0 1

2
6666664

3
7777775

2
66666666666666666664

3
77777777777777777775
After the determination of LP parameters, solution of the LP sub-
problem is obtained. The corresponding optimal LP solution (flow
and routing) for the given layout is illustrated in Tables 3 and 4.
Using the LP solution, processing costs of the parts, inter- and
intra-cell material handling costs are calculated. The total of these
costs is $52,249.06 (OFV2⁄) and the total cost (OFV1⁄ + OFV2⁄) is
$150,199.06.

5.3. Integer solution

After the completion of SA, the best solution found contains
some continuous variables. Therefore, the final solution must be
rounded off to integer values. Fig. 6, Tables 5 and 6 illustrate the
best found solution’s machine layout, part routing and material
flow, respectively. The total objective function value (OFV1
+ OFV2) for the continuous best found solution is $103434.0.

As it can be seen in Tables 5 and 6, product routing and product
flow solutions still include some fractional values. Therefore, the
final solution is needed to be rounded off to integer values. In order
to improve computational efficiency, rounding is performed only
for the final solution. Tables 7 and 8 show the values of the feasible
integer solution. The solution found is also the optimal solution of
the original problem (103,434). However, it must be reminded that
the rounded values are not necessarily the optimal integer solu-
tion. Nevertheless, we observed that, even in large problems,
rounding procedure is generally able to find optimal integer
solutions.
6. Computational results and discussion

Both of the proposed approaches are written in MATLAB pro-
gramming language. In order to test the performance of the algo-
rithm, written programming code was run ten times for each
problem instance. A desktop PC with Intel i5 processor (3.1 GHz),
Windows 7 OS and 4 GB of RAM was used.

In order to validate the effectiveness of the proposed
approaches, a number of problem samples from the literature
(Kia et al., 2012) were solved. The obtained results were compared
with those of the previous study and branch and bound algorithm
(B&B). The results of Kia et al. (2012) are comparable to those of
this study because assumptions of the both models are similar,



Fig. 5. A dynamic layout solution.

Table 3
Product routings obtained by LP (continuous).

Product and operation info

Machine info Product 1 Product 2

Cell Loc. Mach. Op1 Op2 Op3 Op1 Op2 Op3

Period 1 C1 L1 M1 340.74 400
L3 M3 59.26 400 300 61.71

C2 L2 M2
L4 M2 300 238.29

Period 2 C1 L1 M1 375.94 375.94
L2 M3 375.94 200 200
L4 M2 200

C2 L3 M2 124.06
L5 M3 124.06 124.06

Table 4
Transfer of parts between locations obtained by LP (continuous).

Product 1 Product 2

Op1) Op2 Op2) Op3 Op1) Op2 Op2) Op3

Period
1

L1) L1
(340.74)

L1) L3 (400) L4) L3
(300)

L3) L3
(61.71)

L3) L1
(59.26)

L3) L4
(238.29)

Period
2

L1) L1
(375.94)

L1) L2
(375.94)

L4) L2
(200)

L2) L2 (200)

L5) L3
(124.06)

L3) L5
(124.06)
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except the relocation cost. In Kia et al. (2012), it is assumed that
the unit installation and the unit uninstallation costs of the machi-
nes were equal, which is a restrictive assumption. Thus, in their
model, when a machine installation or uninstallation occurs, only
half of the unit relocation cost is incurred. However, in our model
this assumption is generalized. Thus, installation and uninstalla-
tion costs are not necessarily equal in our model, as they are
imposed separately. In addition to Kia et al. (2012)’s test samples,
13 random test problems were also generated and solved. All of the
problems were also run by using GAMS/Cplex optimization soft-
ware (B&B) for 105 CPU seconds. The best results obtained by the
optimization software are also reported. Problem size data is given
in Table 9. Comparative results are given in Table 10.

GAeLP’s parameters are determined after some initial experi-
ments. The cross-over rate is 0.9, mutation rate is 0.1, population
size is 200 and maximum number of generations is 1000. However,
if best solution cannot be improved in 50 subsequent generations,
search is terminated and the best found solution is reported after
rounding off of the product flow and routing variables.

We observed that in Kia et al. (2012)’ study, OFVs were miscal-
culated. Mostly, the differences between the reported results and
the corrected results are very small. For example in the first exam-
ple the machine installation costs in the first period was not
included in the OFV although it was included in the mathematical
model. Therefore, OFVs of all solutions provided by Kia et al. (2012)
were recalculated and are given in Table 10. All the comparisons
were made using the corrected results.

In the computational experiments we observed that both SAeLP
and GAeLP outperformed the approach developed by Kia et al.
(2012) in terms of solution quality. All of the results found by
SAeLP and GAeLP are better than those found by Kia et al. (2012).
While the relative improvement in the results is small for smaller
problems, as the problem size increases, higher relative improve-
ments in total minimized cost are obtained. In addition to being
able to reach better solutions, SAeLP and GAeLP are also superior
to Kia et al. (2012)’s technique in terms of computational time.
Even for larger problem instances, computational time is quite
acceptable. As the used computer systems are similar and the pro-
gramming platform (MATLAB) are same, the obtained solution
times are directly comparable to those of Kia et al. (2012).

As the problems provided by Kia et al. (2012) considers very few
number of products, these problems are not adequate to make
inferences about the performances of the solution approaches.
Therefore, 13 random test samples are generated and perfor-
mances of the approaches are also tested against these problems.
After the tests, we observed that especially for larger problems,
solution approaches are capable of finding better solutions than
those found by the optimization software. However, some problem



Fig. 6. Dynamic layout of the best obtained solution.

Table 5
Product routings of the best solution (continuous).

Product and operation info

Machine info Product 1 Product 2

Cell Loc. Mach. Op1 Op2 Op3 Op1 Op2 Op3

Period 1 C1 L1 M2 292.4
L2 M3 292.4 292.4

C2 L3 M2 400 7.6
L4 M3 400 400 7.6 7.6

Period 2 C1 L1 M2 45.45 200
L2 M3 45.45 45.45 200 200

C2 L3 M2 454.55
L4 M3 454.55 454.55

Table 6
Transfer of parts between locations for the best solution (continuous).

Product 1 Product 2

Op1) Op2 Op2) Op3 Op1) Op2 Op2) Op3

Period 1 L4) L3 (400) L3) L4 (400) L1) L2 (292.40) L2) L2 (292.40)
L3) L4 (7.60) L4) L4 (7.60)

Period 2 L2) L1 (45.45) L1) L2 (45.45) L1) L2 (200) L2) L2 (200)
L4) L3 (454.55) L3) L4 (454.55)

Table 7
Product routings of the best solution (integer).

Product and operation info

Machine info Product 1 Product 2

Cell Loc. Mach. Op1 Op2 Op3 Op1 Op2 Op3

Period 1 C1 L1 M2 400 8
L2 M3 400 400 8 8

C2 L3 M2 292
L4 M3 292 292

Period 2 C1 L1 M2 46 200
L2 M3 46 46 200 200

C2 L3 M2 454
L4 M3 454 454
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samples are so complex that B&B algorithm could not even find a
feasible solution after running of the problem for 105 s. This can
be anticipated in advance because some larger problems have
almost 0.2 billion integer and binary variables and almost half a
million constraints. Hence, we developed a mathematical model
to obtain lower bounds for such problems.



Table 8
Transfer of parts between locations for the best solution (integer).

Product 1 Product 2

Op1) Op2 Op2) Op3 Op1) Op2 Op2) Op3

Period 1 L2) L1 (400) L1) L2 (400) L1) L2 (8) L2) L2 (8)
L3) L4 (292) L4) L4 (292)

Period 2 L2) L1 (49) L1) L2 (49) L1) L2 (200) L2) L2 (200)
L4) L3 (451) L3) L4 (451)
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6.1. A lower bound for the problem

Since the relative gap between the obtained results’ objective
function value and those of Kia et al. (2012)’s solutions are large
and since we couldn’t find any feasible integer solution by using
optimization software for some larger problem instances, we have
developed a lower bound, in order to test our solution’s quality. In
this section, the mathematical model of the lower bound is given.

Indexing sets:

t: index for time periods,
p: index for product types,
r: index for operations,
i; j: indices for machine types,
c; d: indices for cells.

Parameters:

T: Number of planning periods in the planning horizon.
P: Number of product types to be produced.
Rp: Number of operations for product type p.
N: Maximum number of cells.
K: Number of available locations in the shop floor.
M: Number of machine types.
A: Intra-cellular material handling cost per product type p, per unit
distance.
E: Inter-cellular material handling cost per product type p, per unit
distance.
Dpt: Demand for product type p, in period t.
k�: Shortest distance in kkl distance matrix
ðk� ¼ mink–lkkljk and l 2 KÞ.
di: Installation cost machines of type i.
Table 9
Problem size data, number of variables and constraints and Simulated Annealing paramet

No Problem size data Number of variables

P Rp K T N M Binary Integer Total

1 2 2 4 2 2 2 48 1156 1204
2 2 3 5 2 2 3 90 7566 7656
3 3 3 6 2 2 4 144 28520 28664
4 4 3 7 2 3 4 224 114920 115144
5 4 4 9 3 3 4 468 425100 425568
6 5 3 8 2 3 5 320 291610 291930
7 5 3 8 3 3 5 520 437415 437935
8 5 4 11 3 3 5 715 1235040 1235755
9 6 3 10 4 3 6 1080 1568184 1569264

10 8 4 12 3 4 8 1536 10653720 10655256
11 12 4 15 2 4 8 1200 16634896 16636096
12 15 3 8 3 4 8 1024 5932824 5933848
13 20 4 9 2 4 10 900 15609620 15610520
14 25 3 9 2 4 10 900 13014020 13014920
15 30 3 9 2 4 10 900 15616820 15617720
16 40 3 12 2 5 10 1440 57744020 57745460
17 20 3 16 2 6 12 2688 106306584 106309272
18 15 3 16 3 6 12 4224 119594916 119599140
19 15 4 16 2 6 15 3360 186796830 186800190
20 20 3 16 2 8 12 3456 188928024 188931480
21 15 3 8 3 4 8 1024 5932824 5933848
22 25 3 9 2 4 10 900 13014020 13014920
bi: Overhead cost of machine type i in each period.
ppri: Processing time of rth operation of product type p, in machine
type i.
li: Unit time variable cost of machine type i.
ci: Purchasing cost of machine type i.
U: The maximum number of machines that can be assigned to a
manufacturing cell.
L: The minimum number of machines that can be assigned to a
manufacturing cell.
Ci: Capacity of machine type i in each period.
apri : 1, if rth operation of product p can be processed by machine
type i, 0, otherwise.

Decision variables:

Xcit: The number of machines of type i that is assigned to cell c,
in period t.
Fprcdijt: Number of products of type p, processed by operation r,
on machine type i, which is assigned to cell c and moved to be
processed by operation r þ 1, on machine type j, which is
assigned to cell d, in period t.
f prcit: Number of products of type p, processed in operation r on
machine type i which is assigned to cell c in period t.
Qit: Total number of machines of type i added to the layout at
the beginning of the period t.

Objective function:

min z ¼
X
t2T

X
p2P

X
r2R

X
c2N

X
d2N
c–d

X
i2M

X
j2M

FprcdijtEk
� ð36Þ

þ
X
t2T

X
p2P

X
r2R

X
c2N

X
i2M

X
j2M
j–i

FprccijtAk
� ð37Þ

þ
X
t2T

X
p2P

X
r2R

X
c2N

X
i2M

f prcitpprili ð38Þ

þ
X
t2T

X
i2M

Qitci ð39Þ

þ
X
t2T

X
c2N

X
i2M

Xcitbi ð40Þ

þ
X
t2T

X
i2M

Qitdi ð41Þ
ers.

Number of
constraints

Simulated Annealing parameters

Initial temp. Final temp. Epoch length Cooling rate

316 7.3 � 104 165 8 0.975
936 11.6 � 104 265 10 0.975

2158 16.3 � 104 371 12 0.975
4874 2.2 � 105 503 14 0.975

13317 3.3 � 105 745 27 0.975
8628 2.1 � 105 491 16 0.975

12982 2.5 � 105 581 24 0.975
25261 3.0 � 105 696 33 0.975
31000 3.9 � 105 884 40 0.975
93012 2.3 � 105 521 36 0.975

115838 2.0 � 105 458 30 0.975
81295 3.9 � 105 899 24 0.975

144574 3.5 � 105 809 18 0.975
126564 2.0 � 105 463 18 0.975
151794 4.9 � 105 1114 18 0.975
336784 3.8 � 105 871 24 0.975
323528 10.9 � 104 248 32 0.975
364479 12.2 � 104 279 48 0.975
433166 1.7 � 105 389 32 0.975
431056 13.7 � 104 314 32 0.975
81295 2.7 � 105 620 24 0.975

126564 2.9 � 105 671 18 0.975



Table 10
Comparison of solutions obtained by SAeLP, GAeLP, Kia et al. (2012) and B&B.

No B&B (105 s) Kia et al. (2012) Objective function value (OFV) Time (s)

SAeLP GAeLP

Improvement (%) Improvement (%)

Best Worst Average Kia et al. (2012) B&B Best Worst Average Kia et al. (2012) B&B Kia et al. (2012) SAeLP (avg.) GAeLP (avg.)

1 67608OPT 67705.43 67608 67608 67608 0.14 0.00 67608 67608 67608 0.14 0.00 57 2.85 14.11
2 103434OPT 104273.40 103434 103434 103434 0.80 0.00 103434 103434 103434 0.80 0.00 179 7.12 30.11
3 148843.8OPT 153772.66 148843.8 148843.8 148843.8 3.21 0.00 148843.8 148843.8 148843.8 3.21 0.00 1033 16.89 57.11
4 190399.3OPT 202016.58 190409.4 191452.9 191083.9 5.75 �0.01 190409.4 194303.6 191530.1 5.75 �0.01 1036 32.67 136.40
5 284905.2 319125.53 288806.1 301164.9 295142.4 9.50 �1.37 287911.8 290986.3 289738.2 9.78 �1.06 3270 324.89 794.62
6 205117.4 239174.64 205133.1 211351 208117.3 14.23 �0.01 205117.4 211611.2 207907.1 14.24 0.00 2186 62.73 290.52
7 271360.3 336417.29 275258.2 281036.4 277760.5 18.18 �1.44 275258.2 277773.6 276101.9 18.18 �1.44 3706 151.93 585.76
8 341606.2 428877.71 341980.3 353699 349710.4 20.26 �0.11 347523.4 363752.5 351188 18.97 �1.73 5581 846.23 2623.99
9 407068.9 483149.76 378553.8 385837 381460.5 21.65 7.00 380822.2 411036.8 395998.9 21.18 6.45 10013 962.74 2861.08

10 474810.5 – 469141 488243.8 477797.7 1.19 476927.1 508241.6 491397.6 – �0.45 – 2347.63 8788.67
11 – – 379892.9 388076.3 383595.6 – 381998.3 403619.9 389178 – – – 3586.74 13168.83
12 423441 – 413861.5 419593.5 418026 2.26 412755.6 427228.5 419949.5 – 2.52 – 850.24 2742.92
13 586390.5 – 574457 590143 580642.2 2.04 574457 606517 590676.6 – 2.04 – 1320.72 5952.57
14 487464.4 – 477167 478252.4 477801 2.11 478964 485625 481793.2 – 1.74 – 1013.94 6078.54
15 587246 – 565887.7 583989 575733.8 3.64 566050.2 594196 581770.5 – 3.61 – 1352.90 6224.57
16 – – 684599.3 687213.2 686116.6 – 673591.3 695834.4 682263.3 – – – 6686.82 33645.97
17 – – 456537.1 463566.6 458352 – 456819.9 491323 470879.5 – – – 5625.74 18533.43
18 – – 486322.2 498785 492467.1 – 486322.2 526871.7 503706.4 – – – 10385.00 28432.59
19 – – 462504.5 469169.2 465474.4 – 470964.5 511801.9 490177.9 – – – 6585.13 25950.24
20 – – 433782 475377.3 443452.4 – 439758.2 465688.9 453556.6 – – – 5493.33 19163.39
21 392462.5 – 392462.5 403567.9 395265.2 0.00 392462.5 423753.5 406283.2 – 0.00 – 871.42 3585.33
22 482446.1 – 473515.7 479492.6 477934 1.85 476125.4 481454.2 477683.9 – 1.31 – 1031.50 5408.03
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Subject to:

X
p2P

X
r2R

f prcitppri 6CiXcit 8 c2N; i2M;t2T ð42Þ
X
c2N

X
i2M

f prcit ¼Dpt 8 p2P;r2R;t2T ð43Þ

Qi;1¼
X
c2N

Xci;1 8 i2M ð44Þ

Qi;tþ1¼
X
c2N

Xci;tþ1�
X
c2N

Xcit 8 i2M;t2 1; . . . ;T�1f g ð45Þ
X
c2N

X
i2M

Fprcdijt ¼ f p;rþ1;djt 8 p2M;r2 1; .. . ;R�1f g;d2N;j2M;t2T ð46Þ
X
d2N

X
j2M

Fprcdijt ¼ f prcit 8 p2M;r2 1; . . . ;R�1f g;c2N; i2M;t2T ð47Þ

f prcit 6Dptapri 8 p2M;r2R;c2N; i2M;t2T ð48ÞX
c2N

X
i2M

Xcit 6K 8 t2T ð49Þ
X
i2M

Xcit 6Bu 8 t2T;c2N ð50Þ
X
i2M

Xcit PBl 8 t2T;c2N ð51Þ

Xcit P0;
Qi;t P0;
Fprcdijt P0;
f prcit P0:

The mathematical model of the lower bound is actually a
simplified form of the original mathematical model. This model
does not consider machine relocations and cost of intra-cell mate-
rial handling among the machines of the same type. In addition, it
assumes that costs of any type material handling movement
(either inter-cell or intra-cell) is calculated as if it was transferred
between the closest locations (k�) on the shop floor.

As the binary variables increase the solution time and the
complexity of a mathematical model, removing of such variables is
useful when developing a lower bound mathematical model. The
model determines the integer number of machines to be assigned
to each cell (Xcit), rather than determining their exact locations in
cells andon the shopfloor. Similarly, in order to reduce the complex-
ity of the problem, flow and routing variables (Fprcdijt and f prcit) are
assumed to be continuous. Almost all parameters and the terms of
the mathematical model of the lower bound are similar to those of
Table 11
Comparison of solutions found by using SAeLP, GAeLP and the lower bound.

Sample no. Lower bound for objective function value Gap (%)

SAeLP GAeLP

1 67578.5 0.04 0.04
2 103434.0 0.00 0.00
3 148575.9 0.18 0.18
4 190199.3 0.11 0.11
5 278481.5 3.57 3.28
6 204483.7 0.32 0.31
7 271104.0 1.51 1.51
8 334865.5 2.08 3.64
9 373642.3 1.30 1.89

10 464322.5 1.03 2.64
11 369832.6 2.65 3.18
12 399951.5 3.36 3.10
13 571460.5 0.52 0.52
14 476378.1 0.17 0.54
15 559300.1 1.16 1.19
16 665792.0 2.75 1.16
17 456312.8 0.05 0.11
18 486318.4 0.00 0.00
19 461797.9 0.15 1.95
20 423163.2 2.45 3.77
21 378447.0 3.57 3.57
22 472924.0 0.12 0.67
the original mathematical model. Since these terms are explained
in the previous sections, in order to avoid repetition, themathemat-
ical model of the lower bound will not be discussed in detail.

The mathematical model of the lower bound was solved to opti-
mality by using GAMS/Cplex software. The comparison of the
results are given in Table 11. As it can be inferred from Table 11,
solutions found by SAeLP and GAeLP for the original problem are
quite close or equal to the optimal solutions of the original problem,
since OFVLB 6 OFVOPT 6 OFVSAeLP and OFVLB 6 OFVOPT 6 OFVGAeLP.
Therefore, the effectiveness of the proposed approaches to find
solutions that are closer to the optimal solutions is shown.
7. Conclusion

Dynamic cellular manufacturing system design is an NP hard
problem. In this study, we present a new mixed-integer program-
ming model for the problem, with numerous design attributes
including inter-cellular layout, intra-cellular layout, cell formation,
alternative process routings, lot splitting, duplicated machines,
operation sequence, processing time, machine capacity and recon-
figurable layout. The model shares common properties with Kia
et al. (2012)’s study except the assumption that the installation
and uninstallation costs of a machine type are equal. In the math-
ematical model proposed in this study, installation and uninstalla-
tion costs are allowed to be unequal. Moreover, when the
linearized versions of these models are compared, it is obvious that
the proposed model has less constraints and variables. This is an
advantage of the proposed model in terms of solution time.

Due to the complexity of the problem, two Linear Programming
based meta-heuristic approaches (SAeLP and GAeLP) were devel-
oped. In these approaches, Linear Programming is embedded into
Simulated Annealing and Genetic Algorithm with problem specific
solution representation and neighborhood mechanisms. The devel-
oped approaches were tested by using some test data taken from
the literature (Kia et al., 2012) and randomly generated larger-
size test problems. In addition, we have also developed a lower
bound for the original problem solved in this study. Comparing
the results of hybrid meta-heuristic approaches with that of the
lower bound, the closeness of the found results to optimality was
shown. It is found out that our solution approaches are capable
of finding near-optimal solutions in reasonable times.

For the future, it is recommended to incorporate some other
design features of CMS design into the model. Some interesting
features that can be incorporated are time value of the money,
inventory holding and outsourcing. In addition, integration of other
meta-heuristics with LP can also be taken into account. In reality,
demand forecasts are mostly inaccurate and unreliable. Therefore,
introducing uncertainty along with the dynamic conditions in CMS
design would also be an important contribution to the CMS design
literature.
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