

Mathematical and Computational Applications, Vol. 18, No. 3, pp. 313-322, 2013

A NEW SIMULATED ANNEALING APPROACH FOR TRAVELLING

SALESMAN PROBLEM

Hüsamettin Bayram
1
 and Ramazan Şahin

2

1
Department of Industrial Engineering Hitit University, Çorum, Turkey

2
Department of Industrial Engineering Gazi University, Ankara, Turkey

husamettinbayram@hitit.edu.tr, rsahin@gazi.edu.tr

Abstract- The aim of this study is to improve searching capability of simulated

annealing (SA) heuristic through integration of two new neighborhood mechanisms.

Due to its ease of formulation, difficulty to solve and various real life applications

several Travelling Salesman Problems (TSP) were selected from the literature for the

testing of the proposed methods. The proposed methods were also compared to

conventional SA with swap neighborhood. The results have shown that the proposed

techniques are more effective than conventional SA, both in terms of solution quality

and time.

Key Words- Simulated Annealing, Travelling salesman problem, Roulette wheel

selection, Meta-heuristics

1. INTRODUCTION

Meta-Heuristics are optimization techniques that start from an initial solution

and search solution space iteratively improving the initial solution. Quality of solutions

is improved during the search with regard to a given measure of quality. SA, Genetic

Algorithms, Tabu Search are some of the popular nature inspired meta-heuristic

algorithms which are used for the solution of combinatorial optimization problems. SA

is based on the analogy between annealing of solids and solving of combinatorial

optimization problems [1]. The SA algorithm is a stochastic meta-heuristic technique

that uses randomized search and randomized acceptance methods which in return

provides SA to escape from local minimum. Thus, SA enables effective searching of

solution space using its specific mechanisms.

Thanks to the ease of formulation, difficulty to solve and various real life

applications TSP is probably the most studied discrete optimization problem [2]. In

TSP, number of cities (nodes) and the distances between them are known. The TSP is

the problem of finding the shortest route that visits each city exactly once and returns to

its origin. The TSP belongs to the class of NP-Hard problems. Therefore, for the large

problems, heuristic approaches are the only viable solution techniques.

In this study, we introduce two modified versions of SA with new neighbor

solution searching strategies. We tested these new approaches using several TSPs from

the literature and we compared them to the conventional SA technique. Improvements

will be discussed and the results of the experiments will be given in the following

sections.

314 H. Bayram and R. Şahin

2. SIMULATED ANNEALING ALGORITHM

Mechanisms within SA prevent the search to quickly converge around a local

minimum. During the search, SA not only accepts better solutions but also the worse

solutions but with a decreasing probability. The probability of a worse solution to be

accepted is determined by two parameters: the temperature and the difference between

the objective function values (OFV) of current solution and neighbor solution. The aim

of accepting worse solutions is to avoid converging of search to a local minimum. At

higher temperatures, the probability of accepting worse solutions is much higher. But,

as the temperature decreases, the probability of accepting worse solution decreases. In

the following figure algorithmic steps of conventional SA is summarized.

Start and generate a random initial solution (Sol),

T=Tmax; OFV=f(Sol);
SolBest=Sol; OFVBest=f(SolBest);

Calculate Δ
(OFV - OFVN)

Is neighbour
solution better than

current solution ?
(OFVN <OFV)

Is
neighbour solution

better than the best
solution?

(OFVN <OFVBest)

Accept new
solution:
Sol =SolN;

OFV= OFVN;

Accept new solution as the best
solution:

SolBest =SolN; OFVBest= OFVN;

Is
the max number of

neighbours for current
temperature

reached?

Decrease
temperature

Is the
minimum

temperature
reached?

Generate uniform
random number (u)

between 0-1

if u < e(Δ/T)?

Generate a Neighbour solution (SolN)
OFVN = f(SolN);

END
YES

NO

NO

YES

NO

YES

YES

NO

YES

NO

Figure 1. Algorithm of Simulated Annealing

A New Simulated Annealing Approach 315

3. LITERATURE REVIEW

SA is a probabilistic meta-heuristic algorithm proposed by [3] and

simultaneously by [4]. It has been proven that, SA is capable of solving many real life

combinatorial optimization problems including scheduling problems [5], facility layout

planning problems [6], assembly line balancing [7], vehicle routing [8] etc. As these

studies are based on implementation of SA to a specific problem, some studies that

contributes to the algorithmic steps of the SA are discussed in following paragraphs.

[9] proposed a fast SA approach where the cooling schedule of the SA is

inversely linear in time. They showed their new cooling strategy is superior to the

conventional SA technique. [10] suggested adaptive SA technique in order to reduce

user defined search parameters. [11] studied Very Fast SA, where he introduced a new

exponentially decreasing cooling schedule. [12] used threshold accepting method,

which is principally simpler than conventional SA technique. They demonstrated their

technique using TSP and showed that threshold accepting yields very near to optimum

results for several known TSPs.

The authors of [13] presented a multi-objective Pareto SA approach, with the

aim of finding set of efficient solutions formulti-objective combinatorial optimization

problems.Objective weights are employed for the overall evaluation of solutions. [14]

discussed parallel SA approach and they tested this technique using several TSPs from

the literature. They have found out that the serial implementation of the SA is superior

to conventional SA for the solving of TSP.

For the solution of TSP, the authors [15] improved adaptive SA with greedy

search and they introduced three different mutation strategies for the generation of new

solutions. Thus the convergence of SA is improved compared to several other

algorithms in the literature. In [16] authors improved SA with greedy gradient

mechanism and they implemented this technique for the solution of a course timetabling

problem.

The above mentioned studies are a very little portion of studies that contribute to

the SA algorithm. However, these techniques either do not use or partially use problem

data in an intelligent and stochastic way for the generation of new solutions. The

contribution of this study to the literature is twofold:

1. In order to generate good solutions, the proposed approaches intelligently

use problem data or previous search experience by employing Roulette

Wheel selection.

2. The proposed techniques do not sacrifice stochasticity and randomness while

using problem data, which is essential for successful search of solution

space.

4. NEW NEIGHBOUR GENERATION STRAGETY

As stated in previous sections, SA searches solution space by generating new

solutions. One of the factors that impact choosing the strategy of neighbor generation is

the representation scheme or in other words solution encoding. Representation scheme

is the way of representing a candidate solution. In applications of SA to TSP, the most

widely used and the simplest representation scheme is permutation encoding. In

316 H. Bayram and R. Şahin

permutation encoding the order of the numbers in the array represents the visiting order

of the cities. For example, if the third element of the array is “5”, then it shows that the

third city to be visited is the fifth city.

Selecting two random positions in permutation encoding representation scheme

and swapping elements of these positions is the easiest and most widely used way of

generating of neighbor solutions. In order to help to understand, in the Figure 2,two

neighbor solutions (routes) for a TSP, the permutation encoding representation schemes

that correspond to those solutions are given and calculations of their OFVs are

described.

1

2

3
4

5

6

7

2 4 7 1 5 3 6

20

15

2
5

7 6

10

OFV = 15 + 6 + 5 + 2 + 7 + 10 + 20 = 65

2 4 5 1 7 3 6

1

2

3
4

5

6

7

20

15

2
5

1

3

10

OFV = 15 + 1 + 2 + 5 + 3 + 10 + 20 = 56

a) b)

(swap the elements of 3rd and 5th positions) -
Swap(3,5)

Figure 2. Solution, solution representation and neighbor generation with swap operator

(a. current solution, b. neighbor solution)

As stated in previous paragraph, this neighbor searching structure is entirely

random and does not take into account the lengths of entering arcs. We assume that the

example given in the figure is for a symmetric TSP. In the figure, swap operator is

applied to the positions 3 and 5. As it can be seen it the figure, after the swap neighbor

generation operator (swap operator) edges 4-5, 5-1, 1-7 and 7-3 left the solution and

edges 4-7, 7-1, 1-5 and 5-3 entered to the solution. Swap operator does not take into

account the length of the entering edges. Therefore, a neighbor generation technique

which intelligently uses the information of arch lengths without deteriorating

diversification capability and randomness of SA is needed.

In Genetic Algorithms, Roulette Wheel selection or fitness proportionate

selection is a widely used technique for the determination of parent solutions to be

combined. As its name implies, in fitness proportionate selection, fitness values are

assigned to the candidate solutions and a better fitness value increases the solution’s

chance to be selected. Namely, every solution is associated with a probability which is

proportional to its fitness value (OFV). Similarly, we propose to use Roulette Wheel as

a selection mechanism of the edge that will enter to the solution. In the case of TSP,

since the goal of TSP is to minimize the total length of route, shorter edges will enter to

A New Simulated Annealing Approach 317

the solution with higher probability. Introduction of edges to the solution is described in

the following figure.

2 4 5 1 7 3 6 2 5 1 7 4 3 6

Current Solution Neighbor Solution

Let’s assume that after performing Roulette Wheel selection, 7-4 is selected as

entering edge. Here, 7
th

 node is origin (source), while the 4
th

 node is destination (sink).

Firstly, sink node (4
th

 node) is separated from its preceding and succeeding nodes and

connected to the source node(7
th

 node) as the sink node. Namely, relative position of

source node is saved and sink node is moved to the subsequent position of the source

node.

5. PROPOSED METHODS

In this study, we propose two different extensions of SA. In the first method,

entering nodes are selected from distance matrix, employing Roulette Wheel selection.

In Roulette Wheel, shorter edges are selected with a higher probability. Selected

matrices are introduced to the solution following the steps described in the last

paragraph of the previous section. In brief, the first method is very similar to the

conventional SA but the neighbor solutions will be generated with the help of Roulette

Wheel selection.

The second method consists of two stages. In the first stage of this method

conventional SA with swap operator is performed. During the first stage two different

matrices are recorded. In the first matrix, the number of times each edge is part of a

solution is recorded. In the second matrix, total OFV values for each of the edges for the

solutions they enter during the search is recorded. At the beginning of the second stage

of the second method, a third matrix is calculated for once. In this matrix, average OFV

values of every edge are calculated using the first and the second matrices. The second

matrix is divided by the first matrix, element by element. A lower average OFV value

for an edge is an indicator of that edge can be a part of good solution with a higher

probability. These average values are then used for the determination of entering edges

in the second stage of the second method, instead of distance matrix. Similar to the first

method, Roulette Wheel selection is applied in the second method using the third matrix

and entering edges are determined and introduced to the solutions in every neighbor

search. The methods are in summarized in below paragraph.

Method 1:

Step 1: Initialization

Step 1.1: Generate a random solution, Sol.

Step 1.2: Calculate solution’s OFV, OFV=f(Sol)

Step 1.3:Assign the initial “best solution” and its OFV value; SolBest = Sol; OF

VBest= f(SolBest);

Step 1.4: Set initial temperature; T=Tmax.

318 H. Bayram and R. Şahin

Step 2: Simulated Annealing

Step 2.1:Select a random edge employing Roulette Wheel selection and using

the distance matrix.

Step 2.2: Generate a neighbor solution (SolN) by introducing new edge to the

matrix and calculate neighbor solution’s OFV; OFVN = f(SolN).

Step 2.3: If OFVN<OFV accept new solution and move to the step2.4.Else,

generate a uniform random number between 0-1 (u) and calculate Δ = OFV -

OFVN. If u< e
Δ/T

 accept new solution and move to the step2.4. Else, reject

solution and move to the Step2.5.

Step 2.4: Set Sol = SolN, OFV - OFVN. If OFVN<OFVBest set SolBest = SolN and

OFVBest = OFVN.

Step 2.5: If maximum number of searches reached for this temperature, then

decrease the temperature; T = T x λ, (λ <1).

Step 2.6: If the minimum temperature is reached, stop the search and proceed to

the Step3. Else, go to the step 2.1.

Step 3: Report SolBest and OFVBest.

Method 2:

Step 1: Initialization

Step 1.1: Generate a random solution, Sol.

Step 1.2: Calculate solution’s OFV, OFV=f(Sol)

Step 1.3:Assign the initial “best solution” and its OFV value; SolBest = Sol;

OFVBest= f(SolBest);

Step 1.4: Set initial temperature; T=Tmax.

Step 2: Simulated Annealing 1

Step 2.1: Select two random positions in the current solution (Sol).

Step 2.2: Generate a neighbor solution (SolN) by swapping the elements of these

positions calculate neighbor solution’s OFV;OFVN = f(SolN) .

Step 2.3: If OFVN<OFV accept new solution and move to the Step 2.4. Else,

generate a uniform random number between 0-1 (u) and calculate Δ;Δ = OFV -

OFVN. If u< e
Δ/T

 accept new solution and move to the step 2.4. Else, reject

solution and move to the Step2.5.

Step 2.4: Set Sol = SolN, OFV - OFVN. Increase edge count matrix’s elements

(matrix 1), that correspond to the edges in SN, by 1. Namely, if there is an edge i-

j in SolN, increase the element in the i
th

 row and in j
th

 column by 1. In addition,

add OFVN to the same elements of the matrix 2. If OFVN<OFVBest set SolBest =

SolN and OFVBest = OFVN.

Step 2.5: If maximum number of searches reached for this temperature, then

decrease the temperature; T = T x λ, (λ <1). Else go to step 2.1.

Step 2.6: If the minimum temperature is reached, stop the search and proceed to

the Step3. Else, go to the step2.1.

Step 3:Divide matrix 2’s every element by same element of the matrix 1 and create a

new matrix that stores an average value for every edge (Matrix 3).

Step 4: Initialization

Step 4.1: Generate a random solution, Sol.

Step 4.2: Calculate solution’s OFV, OFV=f(Sol)

A New Simulated Annealing Approach 319

Step 4.3: Assign the initial “best solution” and its OFV value; SolBest = Sol;

OFVBest= f(SolBest);

Step 4.4: Set initial temperature; T=Tmax

Step 5: Simulated Annealing

Step 5.1: Select a random edge employing Roulette Wheel selection and using

the matrix3.

Step 5.2: Generate a neighbor solution (SolN) introducing new edge to the matrix

and calculate its length; OFVN = f(SolN).

Step 5.3: If OFVN<OFV accept new solution and move to the step5.4. Else,

generate a uniform random number between 0-1 (u) and calculate Δ; Δ = OFV -

OFVN. If u< e
Δ/T

 accept new solution and move to the step5.4. Else, reject

solution and move to the Step5.5.

Step 5.4: Set Sol = SolN, OFV - OFVN. If OFVN<OFVBest set SolBest = SolN and

OFVBest = OFVN.

Step 5.5: If maximum number of searches reached for this temperature, then

decrease the temperature; T = T x λ, (λ <1).

Step 5.6: If the minimum temperature is reached, stop the search and proceed to

the step6. Else go to the step5.1.

Step 6: Report SolBest and OFVBest.

Start

Perform SA +
Record edge counts +

Record total edge OFVs
during search

Calculate average OFV for
every edge

Perform SA with Roulette
Wheel Selection of edges
using average OFV matrix

END

Start

Perform SA with Roulette
Wheel Selection of edges

using distance matrix

END

Method 1 Method 2

Figure 3. Graphical illustration of the proposed methods

6. EXPERIMENTS

For the testing of these two proposed methods, 11 example problems from the

literature were used. Then these two methods are compared to conventional SA with

swap operator. Experiments were conducted in two stages. In the first stage of the

experiments three methods were tested without time limit and with the same SA

parameters. In the second stage, time limited versions of the techniques were run and

320 H. Bayram and R. Şahin

compared. All these methods were written in MATLAB programming language and

every method was run 30 times for every problem. For the comparison of the

techniques, relative error of the average results with respect to the optimal solution was

used. Calculation of average error rate is described below: Results of the first stage of

the experiments are given in Table 1.

Average Error Rate (%) =
 average OFV − (OFV optimal)

(OFV optimal)
× 100 (1)

Table 1. First stage of the experiments

 Tmax Tmin Epoch

Cooling

rate

(alpha) Min Max Avg Std. dev.

of

Solutions

searched

Time(a

vg.)

Avg.

Err.

(%) Optimal

M
e
th

o
d

 1

Gr17[17] 100000 1 20 0.99 2085 2149 2092.5 14.73 22900 0.69 0.36 2085

Gr21 [17] 100000 1 20 0.99 2707 3000 2738.6 72.69 22900 0.75 1.17 2707

Gr24 [17] 100000 1 20 0.99 1272 1408 1322.7 37.65 22900 0.75 3.99 1272
Bayg29 [18] 100000 1 20 0.99 1610 1813 1658.2 53.50 22900 0.80 2.99 1610

Dantzig42 [19] 100000 1 20 0.999 699 740 713.5 12.99 230140 9.69 2.08 699

Gr48 [17] 100000 1 20 0.999 5072 5414 5195.2 95.56 230140 10.14 2.96 5046
Berlin52 [19] 100000 1 20 0.999 7542 8719 8049.2 281.24 230140 11.36 6.73 7542

St70 [17] 100000 1 20 0.999 678 797 727.9 26.29 230140 13.69 7.84 675

Pr76 [20] 100000 1 20 0.999 109769 125739 117335.2 4068.60 230140 15.93 8.48 108159
KroA100 [21] 100000 1 200 0.999 21343 23567 22129.1 573.04 2301400 212.90 3.98 21282

KroA150 [21] 100000 1 200 0.999 27176 30549 28494.4 782.76 2301400 388.93 7.43 26524

M
e
th

o
d

 2

Gr17 [17] 100000 1 20 0.99 2085 2103 2089.7 7.05 22900 0.70 0.23 2085

Gr21 [17] 100000 1 20 0.99 2707 3071 2737.0 85.51 22900 0.73 1.11 2707
Gr24 [17] 100000 1 20 0.99 1279 1382 1318.0 28.15 22900 0.74 3.61 1272

Bayg29 [18] 100000 1 20 0.99 1610 1772 1652.7 44.66 22900 0.77 2.65 1610

Dantzig42 [19] 100000 1 20 0.999 699 753 713.7 15.02 230140 9.87 2.10 699
Gr48 [17] 100000 1 20 0.999 5055 5326 5144.4 66.98 230140 10.50 1.95 5046

Berlin52 [19] 100000 1 20 0.999 7542 8261 7948.9 172.86 230140 11.57 5.40 7542

St70 [17] 100000 1 20 0.999 684 777 718.9 23.13 230140 14.10 6.50 675
Pr76 [20] 100000 1 20 0.999 110458 124109 114672.7 2505.19 230140 15.19 6.02 108159

KroA100 [21] 100000 1 200 0.999 21282 23620 21831.9 536.10 2301400 213.03 2.58 21282

KroA150 [21] 100000 1 200 0.999 27315 28788 28002 426.79 2301400 387.26 5.57 26524

S
A

 w
it

h
 s

w
a

p
 o

p
er

a
to

r

Gr17 [17] 100000 1 20 0.99 2085 2210 2129.7 36.53 22900 0.24 2.14 2085
Gr21 [17] 100000 1 20 0.99 2707 3276 2922.8 197.42 22900 0.26 7.97 2707

Gr24 [17] 100000 1 20 0.99 1272 1476 1393.6 42.15 22900 0.24 9.56 1272

Bayg29 [18] 100000 1 20 0.99 1653 1979 1805.2 81.88 22900 0.23 12.12 1610
Dantzig42 [19] 100000 1 20 0.999 710 879 783.0 40.54 230140 2.37 12.02 699

Gr48 [17] 100000 1 20 0.999 5054 6361 5674.5 261.67 230140 2.24 12.46 5046

Berlin52 [19] 100000 1 20 0.999 7872 9249 8469.2 301.10 230140 2.356 12.29 7542
St70 [17] 100000 1 20 0.999 782 957 868.6 37.98 230140 2.20 28.68 675

Pr76 [20] 100000 1 20 0.999 122859 147863 136155.8 6023.71 230140 2.43 25.88 108159

KroA100 [21] 100000 1 200 0.999 23677 27760 25597.7 1157.55 2301400 21.89 20.28 21282
KroA150 [21] 100000 1 200 0.999 31744 37599 34832.7 1315.70 2301400 21.67 31.33 26524

As it can be seen in Table 1, in the first stage of the experiments the results

obtained using first and second methods are better compared to the results reached using

conventional SA with swap operator. However, first and second methods’ running time

was up to 18 times longer than that of conventional SA due to the computational

complexity. In the second stage of the experiments, conventional SA’s epoch length is

increased in such a way that its running time slightly exceeds that of first and second

methods. The aim of that is to compare proposed methods’ effectiveness in a limited

time. For this reason, in the second stage of experiments only conventional SA was run

with increased epoch length. The results of the second stage of the experiment are given

in Table 2.

A New Simulated Annealing Approach 321

Table 2. Second stage of the experiments

 Tmax Tmin Epoch

Cooling

rate

(alpha) Min Max Average

Standard

deviation

of

Solutions

searched

Time

(avg.)

Avg.

Err.

(%) Optimal

S
A

 w
it

h
 s

w
a

p
 o

p
er

a
to

r

Gr17 [17] 100000 1 60 0.99 2085 2136 2104.9 17.65 68700 0.70 0.95 2085

Gr21 [17] 100000 1 60 0.99 2707 3254 2828.5 159.06 68700 0.76 4.49 2707

Gr24 [17] 100000 1 65 0.99 1272 1432 1340.9 47.10 74425 0.76 5.42 1272
Bayg29 [18] 100000 1 70 0.99 1620 1808 1700.5 57.55 80150 0.81 5.62 1610

Dantzig42 [19] 100000 1 85 0.999 699 784 741.6 23.48 978095 10.09 6.09 699

Gr48 [17] 100000 1 95 0.999 5071 5709 5373.3 202.66 1093165 11.03 6.49 5046
Berlin52 [19] 100000 1 99 0.999 7670 8613 8194.8 248.10 1139193 12.52 8.66 7542

St70 [17] 100000 1 129 0.999 704 813 757.5 27.48 1484403 14.20 12.22 675

Pr76 [20] 100000 1 150 0.999 113943 132597 122147.2 4150.12 1726050 16.03 12.93 108159
KroA100 [21] 100000 1 2050 0.999 21715 24693 23295.8 738.29 23589350 235.94 9.46 21282

KroA150 [21] 100000 1 3650 0.999 27869 30931 29541.6 871.87 41296044 395.33 11.38 26524

In the second stage of the experiments, conventional SA with swap operator was

performed. In order to increase its running time and improve the quality of solutions,

epoch lengths were increased. As it can be seen in Table 1 and Table 2, results obtained

using the proposed methods are superior to the results obtained using conventional SA

with swap operator. It can be inferred that, neighbor generation through intelligent

introduction of edges increases the capability of SA to reach better solution. In addition,

second method was also slightly better than the first method. But, it must be kept in

mind that, the times given for second method are not the actual running times of second

method. The time required for the generation of matrix 1 and matrix 2 are excluded.

That means, it cannot be asserted that second method is better than first method.

7. CONCLUSION

This paper introduces two new solution approaches for TSP based on SA. These

techniques employ Roulette Wheel selection strategy for the selection of entering edges

to a solution representation. The first method uses distance matrix and the second

method uses a new matrix which is created using the average OFVs of previously

visited solutions. Then, the proposed methods were tested on 11 well known benchmark

problem sets from literature. After the experiments, it is found out that the proposed

methods are superior to conventional SA with swap parameter in reaching optimal and

suboptimal solutions. The main advantage of these techniques is improved convergence

capability by using problem data and without losing inherent stochasticity in the SA

technique. The paper has also revealed that the Roulette wheel selection of genetic

algorithm is also applicable in SA with success.

8. REFERENCES

1. E. Aarts, J. K. Lenstra, Local search in combinatorial optimization, Chichester, U.K.,

Wiley.

2. G. Gutin, Traveling salesman problems, Handbook of Graph theory, Boca Raton,

U.S.A, CRC Press, 2003.

3. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing,

Science 220, 671–680, 1983.

322 H. Bayram and R. Şahin

4. V. Cerny, Thermodynamical Approach to the Traveling Salesman Problem: An

Efficient Simulation Algorithm, Journal of Optimization Theory and Applications

45(1), 41–51, 1985.

5. R. Zhang, C. Wu, A hybrid immune simulated annealing algorithm for the job shop

scheduling problem, Applied Soft Computing 10, 79–89, 2010.

6. R. Şahin, A Simulated Annealing Algorithm for Solving the Bi-Objective Facility

Layout Problem, Expert Systems with Applications 38(4), 4460–4465, 2011.

7. B. Cakir, F. Altiparmak, B. Dengiz, Multi-objective optimization of a stochastic

assembly line balancing: A hybrid simulated annealing algorithm, Computers &

Industrial Engineering 60, 376–384, 2011.

8. S.W. Lin, V.F. Yu, S.Y. Chou, Solving the truck and trailer routing problem based

on a simulated annealing heuristic, Computers & Operations Research 36, 1683–1692,

2009.

9. H. Szu, R. Hartley, Fast Simulated Annealing, Physics Letters A 122, 157-162, 1987.

10. L. Ingber, A. Petraglia, M.R. Petraglia, M.A.S. Machado, Adaptive simulated

annealing, Stochastic global optimization and its applications with fuzzy adaptive

simulated annealing, 33-62, Springer Berlin Heidelberg.

11. L. Ingber,Very fast simulated re-annealing, Mathematical and computer modeling

12, 967-973, 1989.

12. G. Dueck, T. Scheuer, Threshold accepting: a general purpose optimization

algorithm appearing superior to simulated annealing, Journal of computational physics

90, 161-175, 1990.

13. P. Czyzżak, A. Jaszkiewicz, Pareto simulated annealing-a metaheuristic technique

for multiple‐objective combinatorial optimization, Journal of Multi‐Criteria Decision

Analysis 7, 34-47, 1998.

14. M. Malek, M. Guruswamy, M. Pandya, H. Owens, Serial and parallel simulated

annealing and tabu search algorithms for the traveling salesman problem, Annals of

Operations Research 21, 59-84, 1989.

15. X. Geng, Z. Chen, W. Yang, D. Shi, K. Zhao, Solving the traveling salesman

problem based on an adaptive simulated annealing algorithm with greedy search,

Applied Soft Computing 11, 3680-3689, 2011

16. M. Kalender, A.Kheiri, E. Ozcan, E.K. Burke, A greedy gradient-simulated

annealing hyper-heuristic for a curriculum-based course timetabling problem, In

Computational Intelligence (UKCI), 2012 12th UK Workshop on (pp. 1-8). IEEE, 2012.

17. M. Grötschel and O. Holland, Solution of Large Scale Symmetric Travelling

Salesman Problems, Mathematical Programming 51(1-3),141–202,1991.

18. M. Grötschel, Optimierungsmethoden I, Lecture Notes, University of Augsburg.

19. G. B. Dantzig, D. R. Fulkerson, S. M. Johnson, Solution of a Large Scale Traveling-

Salesman Problem, Operations Research 2, 393–410, 1954.

20. M. W. Padberg, G. Rinaldi, A Branch and Cut Algorithm for the Resolution of

Large-Scale Symmetric Traveling Salesman Problems, IASI Research Report 247, 1988.

21. W. Felts, P. Krolak, G. Marble, A Man-Machine Approach towards Solving the

Travelling-Salesman Problem, Communications ACM 14, 327–334, 1971.

