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Abstract- The aim of this study is to improve searching capability of simulated 

annealing (SA) heuristic through integration of two new neighborhood mechanisms. 

Due to its ease of formulation, difficulty to solve and various real life applications 

several Travelling Salesman Problems (TSP) were selected from the literature for the 

testing of the proposed methods. The proposed methods were also compared to 

conventional SA with swap neighborhood. The results have shown that the proposed 

techniques are more effective than conventional SA, both in terms of solution quality 

and time. 
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1. INTRODUCTION 

 

Meta-Heuristics are optimization techniques that start from an initial solution 

and search solution space iteratively improving the initial solution. Quality of solutions 

is improved during the search with regard to a given measure of quality. SA, Genetic 

Algorithms, Tabu Search are some of the popular nature inspired meta-heuristic 

algorithms which are used for the solution of combinatorial optimization problems. SA 

is based on the analogy between annealing of solids and solving of combinatorial 

optimization problems [1]. The SA algorithm is a stochastic meta-heuristic technique 

that uses randomized search and randomized acceptance methods which in return 

provides SA to escape from local minimum. Thus, SA enables effective searching of 

solution space using its specific mechanisms. 

Thanks to the ease of formulation, difficulty to solve and various real life 

applications TSP is probably the most studied discrete optimization problem [2]. In 

TSP, number of cities (nodes) and the distances between them are known. The TSP is 

the problem of finding the shortest route that visits each city exactly once and returns to 

its origin. The TSP belongs to the class of NP-Hard problems. Therefore, for the large 

problems, heuristic approaches are the only viable solution techniques. 

In this study, we introduce two modified versions of SA with new neighbor 

solution searching strategies. We tested these new approaches using several TSPs from 

the literature and we compared them to the conventional SA technique. Improvements 

will be discussed and the results of the experiments will be given in the following 

sections. 
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2. SIMULATED ANNEALING ALGORITHM 

 

Mechanisms within SA prevent the search to quickly converge around a local 

minimum. During the search, SA not only accepts better solutions but also the worse 

solutions but with a decreasing probability. The probability of a worse solution to be 

accepted is determined by two parameters: the temperature and the difference between 

the objective function values (OFV) of current solution and neighbor solution. The aim 

of accepting worse solutions is to avoid converging of search to a local minimum. At 

higher temperatures, the probability of accepting worse solutions is much higher. But, 

as the temperature decreases, the probability of accepting worse solution decreases. In 

the following figure algorithmic steps of conventional SA is summarized. 

 
Start and generate a random initial solution (Sol), 

T=Tmax; OFV=f(Sol);
SolBest=Sol; OFVBest=f(SolBest);

Calculate Δ 
(OFV - OFVN) 

Is neighbour 
solution better than 

current solution ?
(OFVN <OFV)

Is 
neighbour solution 

better than the best 
solution?

(OFVN <OFVBest)

Accept new 
solution:
Sol =SolN;

OFV= OFVN;

Accept new solution as the best 
solution:

SolBest =SolN; OFVBest= OFVN;

Is 
the max number of 

neighbours for current 
temperature 

reached?

Decrease 
temperature

Is the 
minimum 

temperature 
reached?

Generate uniform 
random number (u) 

between 0-1

if  u < e(Δ/T)?

Generate a Neighbour solution (SolN)
OFVN = f(SolN);

END
YES

NO

NO

YES

NO

YES

YES

NO

YES

NO

 
Figure 1. Algorithm of Simulated Annealing 
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3. LITERATURE REVIEW 

 

SA is a probabilistic meta-heuristic algorithm proposed by [3] and 

simultaneously by [4]. It has been proven that, SA is capable of solving many real life 

combinatorial optimization problems including scheduling problems [5], facility layout 

planning problems [6], assembly line balancing [7], vehicle routing [8] etc. As these 

studies are based on implementation of SA to a specific problem, some studies that 

contributes to the algorithmic steps of the SA are discussed in following paragraphs. 

[9] proposed a fast SA approach where the cooling schedule of the SA is 

inversely linear in time. They showed their new cooling strategy is superior to the 

conventional SA technique. [10] suggested adaptive SA technique in order to reduce 

user defined search parameters. [11] studied Very Fast SA, where he introduced a new 

exponentially decreasing cooling schedule. [12] used threshold accepting method, 

which is principally simpler than conventional SA technique. They demonstrated their 

technique using TSP and showed that threshold accepting yields very near to optimum 

results for several known TSPs. 

The authors of [13] presented a multi-objective Pareto SA approach, with the 

aim of finding set of efficient solutions formulti-objective combinatorial optimization 

problems.Objective weights are employed for the overall evaluation of solutions. [14] 

discussed parallel SA approach and they tested this technique using several TSPs from 

the literature. They have found out that the serial implementation of the SA is superior 

to conventional SA for the solving of TSP. 

For the solution of TSP, the authors [15] improved adaptive SA with greedy 

search and they introduced three different mutation strategies for the generation of new 

solutions. Thus the convergence of SA is improved compared to several other 

algorithms in the literature. In [16] authors improved SA with greedy gradient 

mechanism and they implemented this technique for the solution of a course timetabling 

problem. 

The above mentioned studies are a very little portion of studies that contribute to 

the SA algorithm. However, these techniques either do not use or partially use problem 

data in an intelligent and stochastic way for the generation of new solutions. The 

contribution of this study to the literature is twofold:  

1. In order to generate good solutions, the proposed approaches intelligently 

use problem data or previous search experience by employing Roulette 

Wheel selection. 

2. The proposed techniques do not sacrifice stochasticity and randomness while 

using problem data, which is essential for successful search of solution 

space. 

 

4. NEW NEIGHBOUR GENERATION STRAGETY 

 

As stated in previous sections, SA searches solution space by generating new 

solutions. One of the factors that impact choosing the strategy of neighbor generation is 

the representation scheme or in other words solution encoding. Representation scheme 

is the way of representing a candidate solution. In applications of SA to TSP, the most 

widely used and the simplest representation scheme is permutation encoding. In 
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permutation encoding the order of the numbers in the array represents the visiting order 

of the cities. For example, if the third element of the array is “5”, then it shows that the 

third city to be visited is the fifth city. 

Selecting two random positions in permutation encoding representation scheme 

and swapping elements of these positions is the easiest and most widely used way of 

generating of neighbor solutions. In order to help to understand, in the Figure 2,two 

neighbor solutions (routes) for a TSP, the permutation encoding representation schemes 

that correspond to those solutions are given and calculations of their OFVs are 

described. 
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Figure 2. Solution, solution representation and neighbor generation with swap operator 

(a. current solution, b. neighbor solution) 

 

As stated in previous paragraph, this neighbor searching structure is entirely 

random and does not take into account the lengths of entering arcs. We assume that the 

example given in the figure is for a symmetric TSP. In the figure, swap operator is 

applied to the positions 3 and 5. As it can be seen it the figure, after the swap neighbor 

generation operator (swap operator) edges 4-5, 5-1, 1-7 and 7-3 left the solution and 

edges 4-7, 7-1, 1-5 and 5-3 entered to the solution. Swap operator does not take into 

account the length of the entering edges. Therefore, a neighbor generation technique 

which intelligently uses the information of arch lengths without deteriorating 

diversification capability and randomness of SA is needed. 

In Genetic Algorithms, Roulette Wheel selection or fitness proportionate 

selection is a widely used technique for the determination of parent solutions to be 

combined. As its name implies, in fitness proportionate selection, fitness values are 

assigned to the candidate solutions and a better fitness value increases the solution’s 

chance to be selected. Namely, every solution is associated with a probability which is 

proportional to its fitness value (OFV). Similarly, we propose to use Roulette Wheel as 

a selection mechanism of the edge that will enter to the solution. In the case of TSP, 

since the goal of TSP is to minimize the total length of route, shorter edges will enter to 
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the solution with higher probability. Introduction of edges to the solution is described in 

the following figure. 

2 4 5 1 7 3 6 2 5 1 7 4 3 6

Current Solution Neighbor Solution

 

Let’s assume that after performing Roulette Wheel selection, 7-4 is selected as 

entering edge. Here, 7
th

 node is origin (source), while the 4
th

 node is destination (sink). 

Firstly, sink node (4
th

 node) is separated from its preceding and succeeding nodes and 

connected to the source node(7
th

 node) as the sink node. Namely, relative position of 

source node is saved and sink node is moved to the subsequent position of the source 

node. 

 

5. PROPOSED METHODS 

 

In this study, we propose two different extensions of SA. In the first method, 

entering nodes are selected from distance matrix, employing Roulette Wheel selection. 

In Roulette Wheel, shorter edges are selected with a higher probability. Selected 

matrices are introduced to the solution following the steps described in the last 

paragraph of the previous section. In brief, the first method is very similar to the 

conventional SA but the neighbor solutions will be generated with the help of Roulette 

Wheel selection. 

The second method consists of two stages. In the first stage of this method 

conventional SA with swap operator is performed. During the first stage two different 

matrices are recorded. In the first matrix, the number of times each edge is part of a 

solution is recorded. In the second matrix, total OFV values for each of the edges for the 

solutions they enter during the search is recorded. At the beginning of the second stage 

of the second method, a third matrix is calculated for once. In this matrix, average OFV 

values of every edge are calculated using the first and the second matrices. The second 

matrix is divided by the first matrix, element by element. A lower average OFV value 

for an edge is an indicator of that edge can be a part of good solution with a higher 

probability. These average values are then used for the determination of entering edges 

in the second stage of the second method, instead of distance matrix. Similar to the first 

method, Roulette Wheel selection is applied in the second method using the third matrix 

and entering edges are determined and introduced to the solutions in every neighbor 

search. The methods are in summarized in below paragraph. 

 

Method 1: 

Step 1: Initialization 

Step 1.1: Generate a random solution, Sol. 

Step 1.2: Calculate solution’s OFV, OFV=f(Sol) 

Step 1.3:Assign the initial “best solution” and its OFV value; SolBest = Sol; OF 

VBest= f(SolBest); 

Step 1.4: Set initial temperature; T=Tmax. 
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Step 2: Simulated Annealing 

Step 2.1:Select a random edge employing Roulette Wheel selection and using 

the distance matrix. 

Step 2.2: Generate a neighbor solution (SolN) by introducing new edge to the 

matrix and calculate neighbor solution’s OFV; OFVN = f(SolN). 

Step 2.3: If OFVN<OFV accept new solution and move to the step2.4.Else, 

generate a uniform random number between 0-1 (u) and calculate Δ = OFV - 

OFVN. If u< e
Δ/T

 accept new solution and move to the step2.4. Else, reject 

solution and move to the Step2.5. 

Step 2.4: Set Sol = SolN, OFV - OFVN. If OFVN<OFVBest set SolBest = SolN and 

OFVBest = OFVN. 

Step 2.5: If maximum number of searches reached for this temperature, then 

decrease the temperature; T = T x λ, (λ <1). 

Step 2.6: If the minimum temperature is reached, stop the search and proceed to 

the Step3. Else, go to the step 2.1. 

Step 3: Report SolBest and OFVBest. 

 

Method 2: 

Step 1: Initialization 

Step 1.1: Generate a random solution, Sol. 

Step 1.2: Calculate solution’s OFV, OFV=f(Sol) 

Step 1.3:Assign the initial “best solution” and its OFV value; SolBest = Sol; 

OFVBest= f(SolBest); 

Step 1.4: Set initial temperature; T=Tmax. 

Step 2: Simulated Annealing 1 

Step 2.1: Select two random positions in the current solution (Sol). 

Step 2.2: Generate a neighbor solution (SolN) by swapping the elements of these 

positions calculate neighbor solution’s OFV;OFVN = f(SolN) . 

Step 2.3: If OFVN<OFV accept new solution and move to the Step 2.4. Else, 

generate a uniform random number between 0-1 (u) and calculate Δ;Δ = OFV - 

OFVN. If u< e
Δ/T

 accept new solution and move to the step 2.4. Else, reject 

solution and move to the Step2.5. 

Step 2.4: Set Sol = SolN, OFV - OFVN. Increase edge count matrix’s elements 

(matrix 1), that correspond to the edges in SN, by 1. Namely, if there is an edge i-

j in SolN, increase the element in the i
th

 row and in j
th

 column by 1. In addition, 

add OFVN to the same elements of the matrix 2. If OFVN<OFVBest set SolBest = 

SolN and OFVBest = OFVN.  

Step 2.5: If maximum number of searches reached for this temperature, then 

decrease the temperature; T = T x λ, (λ <1). Else go to step 2.1. 

Step 2.6: If the minimum temperature is reached, stop the search and proceed to 

the Step3. Else, go to the step2.1. 

Step 3:Divide matrix 2’s every element by same element of the matrix 1 and create a 

new matrix that stores an average value for every edge (Matrix 3). 

Step 4: Initialization 

Step 4.1: Generate a random solution, Sol. 

Step 4.2: Calculate solution’s OFV, OFV=f(Sol) 
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Step 4.3: Assign the initial “best solution” and its OFV value; SolBest = Sol; 

OFVBest= f(SolBest); 

Step 4.4: Set initial temperature; T=Tmax 

Step 5: Simulated Annealing 

Step 5.1: Select a random edge employing Roulette Wheel selection and using 

the matrix3. 

Step 5.2: Generate a neighbor solution (SolN) introducing new edge to the matrix 

and calculate its length; OFVN = f(SolN). 

Step 5.3: If OFVN<OFV accept new solution and move to the step5.4. Else, 

generate a uniform random number between 0-1 (u) and calculate Δ; Δ = OFV - 

OFVN. If u< e
Δ/T

 accept new solution and move to the step5.4. Else, reject 

solution and move to the Step5.5. 

Step 5.4: Set Sol = SolN, OFV - OFVN. If OFVN<OFVBest set SolBest = SolN and 

OFVBest = OFVN.  

Step 5.5: If maximum number of searches reached for this temperature, then 

decrease the temperature; T = T x λ, (λ <1). 

Step 5.6: If the minimum temperature is reached, stop the search and proceed to 

the step6. Else go to the step5.1. 

Step 6: Report SolBest and OFVBest. 

 

Start

Perform SA + 
Record edge counts + 

Record total edge OFVs 
during search

Calculate average OFV for 
every edge

Perform SA with Roulette 
Wheel Selection of edges 
using average OFV matrix

END

Start

Perform SA with Roulette 
Wheel Selection of edges 

using distance matrix

END

Method 1 Method 2

 
Figure 3. Graphical illustration of the proposed methods 

 

6. EXPERIMENTS 

 

For the testing of these two proposed methods, 11 example problems from the 

literature were used. Then these two methods are compared to conventional SA with 

swap operator. Experiments were conducted in two stages. In the first stage of the 

experiments three methods were tested without time limit and with the same SA 

parameters. In the second stage, time limited versions of the techniques were run and 
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compared. All these methods were written in MATLAB programming language and 

every method was run 30 times for every problem. For the comparison of the 

techniques, relative error of the average results with respect to the optimal solution was 

used. Calculation of average error rate is described below: Results of the first stage of 

the experiments are given in Table 1.  

 

Average Error Rate (%) =  
 average OFV − (OFV optimal)

(OFV optimal)
× 100 ( 1) 

 
Table 1. First stage of the experiments 

 

 Tmax Tmin Epoch 

Cooling 

rate 

(alpha) Min Max Avg Std. dev. 

# of 

Solutions 

searched 

Time(a

vg.) 

Avg. 

Err. 

(%) Optimal 

M
e
th

o
d

 1
 

Gr17[17] 100000 1 20 0.99 2085 2149 2092.5 14.73 22900 0.69 0.36 2085 

Gr21 [17] 100000 1 20 0.99 2707 3000 2738.6 72.69 22900 0.75 1.17 2707 

Gr24 [17] 100000 1 20 0.99 1272 1408 1322.7 37.65 22900 0.75 3.99 1272 
Bayg29 [18] 100000 1 20 0.99 1610 1813 1658.2 53.50 22900 0.80 2.99 1610 

Dantzig42 [19] 100000 1 20 0.999 699 740 713.5 12.99 230140 9.69 2.08 699 

Gr48 [17] 100000 1 20 0.999 5072 5414 5195.2 95.56 230140 10.14 2.96 5046 
Berlin52 [19] 100000 1 20 0.999 7542 8719 8049.2 281.24 230140 11.36 6.73 7542 

St70 [17] 100000 1 20 0.999 678 797 727.9 26.29 230140 13.69 7.84 675 

Pr76 [20] 100000 1 20 0.999 109769 125739 117335.2 4068.60 230140 15.93 8.48 108159 
KroA100 [21] 100000 1 200 0.999 21343 23567 22129.1 573.04 2301400 212.90 3.98 21282 

KroA150 [21] 100000 1 200 0.999 27176 30549 28494.4 782.76 2301400 388.93 7.43 26524 

M
e
th

o
d

 2
 

Gr17 [17] 100000 1 20 0.99 2085 2103 2089.7 7.05 22900 0.70 0.23 2085 

Gr21 [17] 100000 1 20 0.99 2707 3071 2737.0 85.51 22900 0.73 1.11 2707 
Gr24 [17] 100000 1 20 0.99 1279 1382 1318.0 28.15 22900 0.74 3.61 1272 

Bayg29 [18] 100000 1 20 0.99 1610 1772 1652.7 44.66 22900 0.77 2.65 1610 

Dantzig42 [19] 100000 1 20 0.999 699 753 713.7 15.02 230140 9.87 2.10 699 
Gr48 [17] 100000 1 20 0.999 5055 5326 5144.4 66.98 230140 10.50 1.95 5046 

Berlin52 [19] 100000 1 20 0.999 7542 8261 7948.9 172.86 230140 11.57 5.40 7542 

St70 [17] 100000 1 20 0.999 684 777 718.9 23.13 230140 14.10 6.50 675 
Pr76 [20] 100000 1 20 0.999 110458 124109 114672.7 2505.19 230140 15.19 6.02 108159 

KroA100 [21] 100000 1 200 0.999 21282 23620 21831.9 536.10 2301400 213.03 2.58 21282 

KroA150 [21] 100000 1 200 0.999 27315 28788 28002 426.79 2301400 387.26 5.57 26524 

S
A

 w
it

h
 s

w
a

p
 o

p
er

a
to

r 

Gr17 [17] 100000 1 20 0.99 2085 2210 2129.7 36.53 22900 0.24 2.14 2085 
Gr21 [17] 100000 1 20 0.99 2707 3276 2922.8 197.42 22900 0.26 7.97 2707 

Gr24 [17] 100000 1 20 0.99 1272 1476 1393.6 42.15 22900 0.24 9.56 1272 

Bayg29 [18] 100000 1 20 0.99 1653 1979 1805.2 81.88 22900 0.23 12.12 1610 
Dantzig42 [19] 100000 1 20 0.999 710 879 783.0 40.54 230140 2.37 12.02 699 

Gr48 [17] 100000 1 20 0.999 5054 6361 5674.5 261.67 230140 2.24 12.46 5046 

Berlin52 [19] 100000 1 20 0.999 7872 9249 8469.2 301.10 230140 2.356 12.29 7542 
St70 [17] 100000 1 20 0.999 782 957 868.6 37.98 230140 2.20 28.68 675 

Pr76 [20] 100000 1 20 0.999 122859 147863 136155.8 6023.71 230140 2.43 25.88 108159 

KroA100 [21] 100000 1 200 0.999 23677 27760 25597.7 1157.55 2301400 21.89 20.28 21282 
KroA150 [21] 100000 1 200 0.999 31744 37599 34832.7 1315.70 2301400 21.67 31.33 26524 

 

As it can be seen in Table 1, in the first stage of the experiments the results 

obtained using first and second methods are better compared to the results reached using 

conventional SA with swap operator. However, first and second methods’ running time 

was up to 18 times longer than that of conventional SA due to the computational 

complexity. In the second stage of the experiments, conventional SA’s epoch length is 

increased in such a way that its running time slightly exceeds that of first and second 

methods. The aim of that is to compare proposed methods’ effectiveness in a limited 

time. For this reason, in the second stage of experiments only conventional SA was run 

with increased epoch length. The results of the second stage of the experiment are given 

in Table 2. 
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Table 2. Second stage of the experiments 
 

 Tmax Tmin Epoch 

Cooling 

rate 

(alpha) Min Max Average 

Standard 

deviation 

# of 

Solutions 

searched 

Time 

(avg.) 

Avg. 

Err. 

(%) Optimal 

S
A

 w
it

h
 s

w
a

p
 o

p
er

a
to

r 

Gr17 [17] 100000 1 60 0.99 2085 2136 2104.9 17.65 68700 0.70 0.95 2085 

Gr21 [17] 100000 1 60 0.99 2707 3254 2828.5 159.06 68700 0.76 4.49 2707 

Gr24 [17] 100000 1 65 0.99 1272 1432 1340.9 47.10 74425 0.76 5.42 1272 
Bayg29 [18] 100000 1 70 0.99 1620 1808 1700.5 57.55 80150 0.81 5.62 1610 

Dantzig42 [19] 100000 1 85 0.999 699 784 741.6 23.48 978095 10.09 6.09 699 

Gr48 [17] 100000 1 95 0.999 5071 5709 5373.3 202.66 1093165 11.03 6.49 5046 
Berlin52 [19] 100000 1 99 0.999 7670 8613 8194.8 248.10 1139193 12.52 8.66 7542 

St70 [17] 100000 1 129 0.999 704 813 757.5 27.48 1484403 14.20 12.22 675 

Pr76 [20] 100000 1 150 0.999 113943 132597 122147.2 4150.12 1726050 16.03 12.93 108159 
KroA100 [21] 100000 1 2050 0.999 21715 24693 23295.8 738.29 23589350 235.94 9.46 21282 

KroA150 [21] 100000 1 3650 0.999 27869 30931 29541.6 871.87 41296044 395.33 11.38 26524 

 

In the second stage of the experiments, conventional SA with swap operator was 

performed. In order to increase its running time and improve the quality of solutions, 

epoch lengths were increased. As it can be seen in Table 1 and Table 2, results obtained 

using the proposed methods are superior to the results obtained using conventional SA 

with swap operator. It can be inferred that, neighbor generation through intelligent 

introduction of edges increases the capability of SA to reach better solution. In addition, 

second method was also slightly better than the first method. But, it must be kept in 

mind that, the times given for second method are not the actual running times of second 

method. The time required for the generation of matrix 1 and matrix 2 are excluded. 

That means, it cannot be asserted that second method is better than first method. 

 

7. CONCLUSION 

 

This paper introduces two new solution approaches for TSP based on SA. These 

techniques employ Roulette Wheel selection strategy for the selection of entering edges 

to a solution representation. The first method uses distance matrix and the second 

method uses a new matrix which is created using the average OFVs of previously 

visited solutions. Then, the proposed methods were tested on 11 well known benchmark 

problem sets from literature. After the experiments, it is found out that the proposed 

methods are superior to conventional SA with swap parameter in reaching optimal and 

suboptimal solutions. The main advantage of these techniques is improved convergence 

capability by using problem data and without losing inherent stochasticity in the SA 

technique. The paper has also revealed that the Roulette wheel selection of genetic 

algorithm is also applicable in SA with success. 
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